Skip to main content
Log in

Analysis of quasi-optimal polynomial approximations for parameterized PDEs with deterministic and stochastic coefficients

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this work, we present a generalized methodology for analyzing the convergence of quasi-optimal Taylor and Legendre approximations, applicable to a wide class of parameterized elliptic PDEs with finite-dimensional deterministic and stochastic inputs. Such methods construct an optimal index set that corresponds to the sharp estimates of the polynomial coefficients. Our analysis, furthermore, represents a novel approach for estimating best M-term approximation errors by means of coefficient bounds, without the use of the standard Stechkin inequality. In particular, the framework we propose for analyzing asymptotic truncation errors is based on an extension of the underlying multi-index set into a continuous domain, and then an approximation of the cardinality (number of integer multi-indices) by its Lebesgue measure. Several types of isotropic and anisotropic (weighted) multi-index sets are explored, and rigorous proofs reveal sharp asymptotic error estimates in which we achieve sub-exponential convergence rates [of the form \(M \text {exp}({-(\kappa M)^{1/N}})\), with \(\kappa \) a constant depending on the shape and size of multi-index sets] with respect to the total number of degrees of freedom. Through several theoretical examples, we explicitly derive the constant \(\kappa \) and use the resulting sharp bounds to illustrate the effectiveness of Legendre over Taylor approximations, as well as compare our rates of convergence with current published results. Computational evidence complements the theory and shows the advantage of our generalized framework compared to previously developed estimates

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Defined in Sect. 6.

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables. Dover, New York (1965)

    MATH  Google Scholar 

  2. Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equation with random input data. SIAM J. Numer. Anal. 45, 1005–1034 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Tempone, R., Zouraris, G.: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42, 800–825 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bagby, T., Bos, L., Levenberg, N.: Multivariate simultaneous approximation. Constr. Approx. 18, 569–577 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baldoni, V., Berline, N., DeLoera, J., Dutra, B., Köppe, M., Moreinis, S., Pinto, G., Vergne, M., Wu, J.: A User’s Guide for LattE integrale v1.7.1. software package LattE is available at http://www.math.ucdavis.edu/~latte/ (2013)

  6. Beck, J., Nobile, F., Tamellini, L., Tempone, R.: Convergence of quasi-optimal stochastic galerkin methods for a class of PDEs with random coefficients. Comput. Math. Appl. 67(4), 732–751 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beck, J., Tempone, R., Nobile, F., Tamellni, L.: On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods. Math. Models Methods Appl. Sci. 22, 1250023 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beck, M., Robins, S.: Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra. Springer, Berlin (2007)

    MATH  Google Scholar 

  9. Bieri, M., Andreev, R., Schwab, C.: Sparse tensor discretization of elliptic sPDEs. SIAM J. Sci. Comput. 31, 4281–4304 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Buffa, A., Maday, Y., Patera, A., Prud’homme, C., Turinici, G.: A priori convergence of the greedy algorithm for the parametrized reduced basis method. ESAIM Math. Model. Numer. Anal. 46(3), 595–603 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chkifa, A., Cohen, A., DeVore, R., Schwab, C.: Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs. Modél. Math. Anal. Numér. 47(1), 253–280 (2013)

    Article  MATH  Google Scholar 

  12. Chkifa, A., Cohen, A., Schwab, C.: Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs. J. Math. Pures Appl. 103(2), 400–428 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cohen, A., DeVore, R., Schwab, C.: Convergence rates of best N-term Galerkin approximations for a class of elliptic sPDEs. Found. Comput. Math. 10, 615–646 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cohen, A., DeVore, R., Schwab, C.: Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs. Anal. Appl. 9(1), 11–47 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. DeLoera, J., Hemmecke, R., Tauzer, J., Yoshida, R.: Effective lattice point counting in rational convex polytopes. J. Symb. Comput. 38, 1273–1302 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. DeVore, R.: Nonlinear approximation. Acta Numer. 7, 51–150 (1998)

    Article  MATH  Google Scholar 

  17. Elbert, A., LaForgia, A.: On some properties of the gamma function. Proc. Am. Math. Soc. 128, 2667–2673 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fishman, G.S.: Monte Carlo: Concepts, Algorithms, and Applications. Springer, New York (1996)

    Book  MATH  Google Scholar 

  19. Frink, O.: Jordan measure and Riemann integration. Ann. Math. 34(3), 518–526 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)

    Book  MATH  Google Scholar 

  21. Gruber, P.: Convex and Discrete Geometry. Springer, Berlin (2007)

    MATH  Google Scholar 

  22. Hansen, M., Schwab, C.: Analytic regularity and nonlinear approximation of a class of parametric semilinear elliptic PDEs. Math. Nachr. 286(8–9), 832–860 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hansen, M., Schwab, C.: Sparse adaptive approximation of high dimensional parametric initial value problems. Vietnam J. Math. 41(2), 181–215 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hoang, V.H., Schwab, C.: Sparse tensor Galerkin discretizations for parametric and random parabolic PDEs—analytic regularity and generalized polynomial chaos approximation. SIAM J. Math. Anal. 45(5), 3050–3083 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lewin, L.: Polylogarithms and Associated Functions. North-Holland, New York (1981)

    MATH  Google Scholar 

  26. Lewin, L. (ed.): Structural Properties of Polylogarithms. American Mathematical Society, Providence (1991)

    MATH  Google Scholar 

  27. Loève, M.: Probability theory. I, 4th edn. Graduate Texts in Mathematics, vol. 45. Springer, New York (1977)

  28. Loève, M.: Probability theory. II, 4th edn. Graduate Texts in Mathematics, vol. 46. Springer, New York (1978)

  29. Milani, R., Quarteroni, A., Rozza, G.: Reduced basis methods in linear elasticity with many parameters. Comput. Methods Appl. Mech. Eng. 197, 4812–4829 (2008)

    Article  MATH  Google Scholar 

  30. Neuman, E.: Inequalities and bounds for the incomplete gamma function. Results Math. 63, 1209–1214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nobile, F., Tempone, R., Webster, C.: A sparse grid stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 46, 2309–2345 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Royden, H., Fitzpatrick, P.: Real Analysis, 4th edn. Prentice Hall, New Jersey (2010)

    MATH  Google Scholar 

  33. Stanley, R.: Enumerative Combinatorics, vol. I. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  34. Tao, T.: An introduction to measure theory. Graduate Studies in Mathematics, vol. 126. American Mathematical Society, Providence (2011)

  35. Todor, R., Schwab, C.: Convergence rates of sparse chaos approximations of elliptic problems with stochastic coefficients. IMA J. Numer. Anal. 27, 232–261 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wiener, N.: The homogeneous chaos. Am. J. Math. 60, 897–936 (1938)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to graciously thank Prof. Ron DeVore for his interest in our work, his patience in discussing the analysis of “best M-term” approximations, and his tremendously helpful insights into the theoretical developments we pursued in this paper. This material is based upon work supported in part by the US Air Force of Scientific Research under Grant Number 1854-V521-12 and by the US Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under contract and Award Numbers ERKJ314, ERKJ259, and ERKJE45; and by the Laboratory Directed Research and Development program at the Oak Ridge National Laboratory, which is operated by UT-Battelle, LLC., for the US Department of Energy under Contract DE-AC05-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clayton G. Webster.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, H., Webster, C.G. & Zhang, G. Analysis of quasi-optimal polynomial approximations for parameterized PDEs with deterministic and stochastic coefficients. Numer. Math. 137, 451–493 (2017). https://doi.org/10.1007/s00211-017-0878-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-017-0878-6

Mathematics Subject Classification

Navigation