Skip to main content
Log in

A multi well-balanced scheme for the shallow water MHD system with topography

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The shallow water magnetohydrodynamic system involves several families of physically relevant steady states. In this paper we design a well-balanced numerical scheme for the one-dimensional shallow water magnetohydrodynamic system with topography, that resolves exactly a large range of steady states. Two variants are proposed with slightly different families of preserved steady states. They are obtained by a generalized hydrostatic reconstruction algorithm involving the magnetic field and with a cutoff parameter to remove singularities. The solver is positive in height and semi-discrete entropy satisfying, which ensures the robustness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25, 2050–2065 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Audusse, E., Bouchut, F., Bristeau, M.-O., Sainte-Marie, J.: Kinetic entropy inequality and hydrostatic reconstruction scheme for the Saint-Venant system. Math. Comput. 85, 2815–2837 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bale, D.S., Leveque, R.J., Mitran, S., Rossmanith, J.A.: A wave propagation method for conservation laws and balance laws with spatially varying flux functions. SIAM J. Sci. Comput. 24, 955–978 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balsara, D.S., Dumbser, M., Abgrall, R.: Multidimensional HLL and HLLC Riemann solvers for unstructured meshes with application to Euler and MHD flows. J. Comput. Phys. 261, 172–208 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balsara, D.S., Spicer, D.S.: A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J. Comput. Phys. 149, 270–292 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berthon, C., Chalons, C.: A fully well-balanced, positive and entropy-satisfying Godunov-type method for the shallow-water equations. Math. Comput. 85, 1281–1307 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berthon, C., Foucher, F.: Efficient well-balanced hydrostatic upwind schemes for shallow water equations. J. Comput. Phys. 231, 4993–5015 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bouchut, F.: Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws, and Well-Balanced Schemes for Sources. Birkhäuser, Basel (2004)

    Book  MATH  Google Scholar 

  9. Bouchut, F., Boyaval, S.: A new model for shallow viscoelastic fluids. Math. Models Methods Appl. Sci. 23, 1479–1526 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bouchut, F., Lhébrard, X.: A 5-wave relaxation solver for the shallow water MHD system. J. Sci. Comput. 68, 92–115 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bouchut, F., Morales, T.: A subsonic-well-balanced reconstruction scheme for shallow water flows. SIAM J. Numer. Anal. 48, 1733–1758 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bouchut, F., Zeitlin, V.: A robust well-balanced scheme for multi-layer shallow water equations. Discrete Contin. Dyn. Syst. B 13, 739–758 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Castro, M.J., Fernández-Nieto, E.D.: A class of computationally fast first order finite volume solvers: PVM methods. SIAM J. Sci. Comput. 34, 2173–2196 (2012)

    Article  MathSciNet  Google Scholar 

  14. Castro, M.J., Pardo, A., Parés, C.: Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique. Math. Models Methods Appl. Sci. 17, 2065–2113 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Castro, M.J., Pardo, A., Parés, C., Toro, E.F.: On some fast well-balanced first order solvers for nonconservative systems. Math. Comput. 79, 1427–1472 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chalons, C., Coquel, F., Godlewski, E., Raviart, P.-A., Seguin, N.: Godunov-type schemes for hyperbolic systems with parameter-dependent source. The case of Euler system with friction. Math. Models Methods Appl. Sci. 20, 2109–2166 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chertock, A., Kurganov, A., Liu, Y.: Central-upwind schemes for the system of shallow water equations with horizontal temperature gradients. Numer. Math. 127, 595–639 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer, T., Wesenberg, M.: Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175, 645–673 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dellar, P.J.: Hamiltonian and symmetric hyperbolic structures of shallow water magnetohydrodynamics. Phys. Plasmas 9, 1130 (2002)

    Article  MathSciNet  Google Scholar 

  20. DeSterck, H.: Hyperbolic theory of the shallow water magnetohydrodynamics equations. Phys. Plasmas 8, 3293 (2001)

    Article  MathSciNet  Google Scholar 

  21. Desveaux, V., Zenk, M., Berthon, C., Klingenberg, C.: Well-balanced schemes to capture non-explicit steady states: Ripa model. Math. Comput. 85, 1571–1602 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Desveaux, V., Zenk, M., Berthon, C., Klingenberg, C.: A well-balanced scheme to capture non-explicit steady states in the Euler equations with gravity. Int. J. Numer. Methods Fluids 81, 104–127 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fuchs, F.G., McMurry, A.D., Mishra, S., Risebro, N.H., Waagan, K.: Approximate Riemann solvers and robust high-order finite volume schemes for multi-dimensional ideal MHD equations. Commun. Comput. Phys. 9, 324–362 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. George, D.L.: Augmented Riemann solvers for the shallow water equations over variable topography with steady states and inundation. J. Comput. Phys. 227, 3089–3113 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gilman, P.A.: Magnetohydrodynamic ”shallow water” equations for the solar tachocline. Astrophys. J. Lett. 544, L79–L82 (2000)

    Article  Google Scholar 

  26. Parés, C.: Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44, 300–321 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Parés, C., Castro, M.: On the well-balance property of Roe’s method for nonconservative hyperbolic systems. Applications to shallow-water systems. Math. Model. Numer. Anal. 38, 821–852 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Qamar, S., Warnecke, G.: Application of space-time CE/SE method to shallow water magnetohydrodynamic equations. J. Comput. Appl. Math. 196, 132–149 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rossmanith, J.A.: A constrained transport method for the shallow water MHD equations, in Hyperbolic problems: theory, numerics, applications. In: Hou, T.Y., Tadmor, E. (eds.) 9th International Conference on Hyperbolic Problems, Pasadena, 2002, pp. 851–860 (2003)

  30. Rossmanith, J.A., Bale, D.S., Leveque, R.J.: A wave propagation algorithm for hyperbolic systems on curved manifolds. J. Comput. Phys. 199, 631–662 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Waagan, K., Federrath, C., Klingenberg, C.: A robust numerical scheme for highly compressible magnetohydrodynamics: nonlinear stability, implementation and tests. J. Comput. Phys. 230, 3331–3351 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xing, Y., Shu, C.-W.: A survey of high order schemes for the shallow water equations. J. Math. Study 47, 221–249 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Xing, Y., Shu, C.-W., Noelle, S.: On the advantage of well-balanced schemes for moving-water equilibria of the shallow water equations. J. Sci. Comput. 48, 339–349 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zeitlin, V.: Remarks on rotating shallow-water magnetohydrodynamics. Nonlinear Process. Geophys. 20, 893–898 (2013)

    Article  Google Scholar 

  35. Zeitlin, V., Lusso, C., Bouchut, F.: Geostrophic vs magneto-geostrophic adjustment and nonlinear magneto-inertia-gravity waves in rotating shallow water magnetohydrodynamics. Geophys. Astrophys. Fluid Dyn. 109, 497–523 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Bouchut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouchut, F., Lhébrard, X. A multi well-balanced scheme for the shallow water MHD system with topography. Numer. Math. 136, 875–905 (2017). https://doi.org/10.1007/s00211-017-0865-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-017-0865-y

Mathematics Subject Classification

Navigation