Skip to main content
Log in

On Fourier time-splitting methods for nonlinear Schrödinger equations in the semi-classical limit II. Analytic regularity

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider the time discretization based on Lie-Trotter splitting, for the nonlinear Schrödinger equation, in the semi-classical limit, with initial data under the form of WKB states. We show that both the exact and the numerical solutions keep a WKB structure, on a time interval independent of the Planck constant. We prove error estimates, which show that the quadratic observables can be computed with a time step independent of the Planck constant. The functional framework is based on time-dependent analytic spaces, in order to overcome a previously encountered loss of regularity phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alazard, T., Carles, R.: Supercritical geometric optics for nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 194, 315–347 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alinhac, S., Gérard, P.: Pseudo-differential operators and the Nash-Moser theorem, vol. 82 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI. Translated from the 1991 French original by Stephen S. Wilson (2007)

  3. Bao, W., Jin, S., Markowich, P.A.: On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comput. Phys. 175, 487–524 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bao, W., Jin, S., Markowich, P.A.: Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes. SIAM J. Sci. Comput. 25, 27–64 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benettin, G., Giorgilli, A.: On the Hamiltonian interpolation of near-to-the-identity symplectic mappings with application to symplectic integration algorithms. J. Stat. Phys. 74, 1117–1143 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Besse, C., Bidégaray, B., Descombes, S.: Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40, 26–40 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Besse, C., Carles, R., Méhats, F.: An asymptotic preserving scheme based on a new formulation for NLS in the semiclassical limit. Multiscale Model. Simul. 11, 1228–1260 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carles, R.: Semi-classical analysis for nonlinear Schrödinger equations. World Scientific Publishing Co Pte. Ltd., Hackensack (2008)

    Book  MATH  Google Scholar 

  9. Carles, R.: On Fourier time-splitting methods for nonlinear Schrödinger equations in the semi-classical limit. SIAM J. Numer. Anal. 51, 3232–3258 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Castella, F., Chartier, P., Méhats, F., Murua, A.: Stroboscopic averaging for the nonlinear Schrödinger equation. Found. Comput. Math. 15, 519–559 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cazenave, T., Haraux, A.: An introduction to semilinear evolution equations, vol. 13 of Oxford Lecture Series in Mathematics and its Applications, The Clarendon Press Oxford University Press, New York, 1998. Translated from the 1990 French original by Yvan Martel and revised by the authors (1998)

  12. Chemin, J.-Y.: Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray. In: Actes des Journées Mathématiques à la Mémoire de Jean Leray, vol. 9 of Sémin. Congr., Soc. Math. pp. 99–123. France, Paris (2004)

  13. Chiron, D., Rousset, F.: Geometric optics and boundary layers for nonlinear Schrödinger equations. Commun. Math. Phys. 288, 503–546 (2009)

    Article  MATH  Google Scholar 

  14. Descombes, S., Thalhammer, M.: An exact local error representation of exponential operator splitting methods for evolutionary problems and applications to linear Schrödinger equations in the semi-classical regime. BIT 50, 729–749 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Descombes, S., Thalhammer, M.: The Lie-Trotter splitting for nonlinear evolutionary problems with critical parameters. A compact local error representation and application to nonlinear Schrödinger equations in the semi-classical regime. IMA J. Numer. Anal. 33, 722–745 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Faou, E.: Geometric numerical integration and Schrödinger equations. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2012)

    Book  MATH  Google Scholar 

  17. Faou, E., Grébert, B.: Hamiltonian interpolation of splitting approximations for nonlinear PDEs. Found. Comput. Math. 11, 381–415 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gérard, P.: Remarques sur l’analyse semi-classique de l’équation de Schrödinger non linéaire, In: Séminaire sur les Équations aux Dérivées Partielles, 1992–1993, École; Polytech., Palaiseau, pp. Exp. No. XIII, 13 (1993). http://www.numdam.org

  19. Ginibre, J., Velo, G.: Long range scattering and modified wave operators for some Hartree type equations. III. Gevrey spaces and low dimensions. J. Differ. Equ. 175, 415–501 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grenier, E.: Semiclassical limit of the nonlinear Schrödinger equation in small time. Proc. Am. Math. Soc. 126, 523–530 (1998)

    Article  MATH  Google Scholar 

  21. Hairer, E., Lubich, C.: Oscillations over long times in numerical Hamiltonian systems. In: Highly oscillatory problems, vol. 366 of London Math. Soc. Lecture Note Ser., pp. 1–24. Cambridge Univ. Press, Cambridge (2009)

  22. Hairer, E., Lubich, C.: Modulated Fourier expansions for continuous and discrete oscillatory systems. In: Foundations of computational mathematics, Budapest, 2011, vol. 403 of London Math. Soc. Lecture Note Ser. pp. 113–128. Cambridge Univ. Press, Cambridge (2013)

  23. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration, vol. 31 of Springer Series in Computational Mathematics, Springer, Heidelberg, 2010. Structure-preserving algorithms for ordinary differential equations. Reprint of the second (2006) edition (2010)

  24. Hairer, E., Nørsett, S.P., Wanner, G.: Solving ordinary differential equations. I, vol. 8 of Springer Series in Computational Mathematics, 2nd edn. Springer, Berlin (1993) (Nonstiff problems)

  25. Holden, H., Lubich, C., Risebro, N.H.: Operator splitting for partial differential equations with Burgers nonlinearity. Math. Comp. 82, 173–185 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lubich, C.: On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations. Math. Comp. 77, 2141–2153 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mouhot, C., Villani, C.: On Landau damping. Acta Math. 207, 29–201 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Thomann, L.: Instabilities for supercritical Schrödinger equations in analytic manifolds. J. Differ. Equ. 245, 249–280 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémi Carles.

Additional information

This work was supported by the French ANR projects SchEq (ANR-12-JS01-0005-01) and BECASIM (ANR-12-MONU-0007-04).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carles, R., Gallo, C. On Fourier time-splitting methods for nonlinear Schrödinger equations in the semi-classical limit II. Analytic regularity. Numer. Math. 136, 315–342 (2017). https://doi.org/10.1007/s00211-016-0841-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-016-0841-y

Navigation