Skip to main content
Log in

Balancing Neumann–Neumann methods for the cardiac Bidomain model

Numerische Mathematik Aims and scope Submit manuscript

Abstract

Balancing Neumann–Neumann preconditioners are constructed, analyzed and numerically studied for the cardiac Bidomain model in three-dimensions. This reaction–diffusion system is discretized by low-order finite elements in space and implicit–explicit methods in time, yielding very ill-conditioned linear systems that must be solved at each time step. The proposed algorithm is based on decomposing the domain into nonoverlapping subdomains and on solving iteratively the Bidomain Schur complement obtained by implicitly eliminating the degrees of freedom interior to each subdomain. The iteration is preconditioned by a Balancing Neumann–Neumann method employing local Neumann solves on each subdomain and a coarse Bidomain solve. A novel approach for the estimation of the average operator of the nonoverlapping decomposition provides a framework for designing coarse spaces for Balancing Neumann–Neumann methods. The theoretical estimates obtained show that the proposed method is scalable, quasi-optimal and robust with respect to possible coefficient discontinuities of the Bidomain operator. The results of extensive parallel numerical tests in three dimensions confirm the convergence rates predicted by the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Achdou, Y., Le Tallec, P., Nataf, F., Vidrascu, M.: A domain decomposition preconditioner for an advection–diffusion problem. Comput. Methods Appl. Mech. Eng. 184, 145–170 (2000)

    Article  MATH  Google Scholar 

  2. Ascher, O.M., Ruuth, S.J., Wetton, B.T.R.: Implicit–explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balay, S., Brown, J., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G., Curfman McInnes, L., Smith, B.F., Zhang, H.: PETSc (2011). http://www.mcs.anl.gov/petsc

  4. Beirao da Veiga, L., Lovadina, C., Pavarino, L.F.: Positive definite balancing Neumann–Neumann preconditioners for nearly incompressible elasticity. Numer. Math. 104(3), 271–296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bramble, J.H., Pasciak, J.E., Schatz, A.H.: The construction of preconditioners for elliptic problems by substructuring I. Math. Comp. 47(175), 103–134 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bramble, J.H., Pasciak, J.E., Schatz, A.H.: The construction of preconditioners for elliptic problems by substructuring, II. Math. Comp. 47(179), 1–16 (1987)

    Article  MathSciNet  Google Scholar 

  7. Bramble, J.H., Pasciak, J.E., Schatz, A.H.: The construction of preconditioners for elliptic problems by substructuring, III. Math. Comp. 51(184), 415–430 (1988)

    MathSciNet  MATH  Google Scholar 

  8. Bramble, J.H., Pasciak, J.E., Schatz, A.H.: The construction of preconditioners for elliptic problems by substructuring, IV. Math. Comp. 53(187), 1–24 (1989)

    MathSciNet  MATH  Google Scholar 

  9. Casarin, M.A.: Schwarz preconditioners for spectral and mortar finite element methods with applications to incompressible fluids, Ph.D. Thesis, Courant Institute of Mathematical Sciences, TR-717 Department of Computer Science (1996)

  10. Colli Franzone, P., Pavarino, L.F.: A parallel solver for reaction diffusion systems in computational electrocardiology. M3AS 14, 883–911 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Cowsar, L.C., Mandel, J., Wheeler, M.F.: Balancing domain decomposition for mixed finite elements. Math. Comp. 64(211), 989–1015 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dauge, M.: Neumann and mixed problems on curvilinear polyhedra. Integral Equ. Oper. Theory 15(2), 227–261 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dauge, M.: Elliptic Boundary Value Problems on Corner Domains. Springer, New York (1988)

    MATH  Google Scholar 

  14. Dryja, M., Widlund, O.B.: Schwarz methods of Neumann-Neumann type for three-dimensional elliptic finite element problems. Commun. Pure Appl. Math. 48(2), 121–155 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Davis, T.A.: A column pre-ordering strategy for the unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30(2), 165–195 (2004)

    Article  MATH  Google Scholar 

  16. Ethier, M., Bourgault, Y.: Semi-implicit time-discretization schemes for the Bidomain model. SIAM J. Numer. Anal. 46(5), 2443–2468 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gerardo Giorda, L., Mirabella, L., Nobile, F., Perego, M., Veneziani, A.: A model-based block-triangular preconditioner for the Bidomain system in electrocardiology. J. Comp. Phys. 228(10), 3625–3639 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gerardo Giorda, L., Perego, M., Veneziani, A.: Optimized Schwarz coupling of Bidomain and Monodomain models in electrocardiology. M2AN (2010). doi:10.1051/m2an/2010057

  19. Goldfeld, P., Pavarino, L.F., Widlund, O.B.: Balancing Neumann–Neumann preconditioners for mixed approximations of heterogeneous problems in linear elasticity. Numer. Math. 95(2), 283–324 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  21. Greenstein, J.L., Hinch, R., Winslow, R.L.: Mechanisms of excitation–contraction coupling in an integrative model of the cardiac ventricular myocyte. Biophys. J. 90, 77–91 (2006)

    Article  Google Scholar 

  22. Linge, S., Sundnes, J., Hanslien, M., Lines, G.T., Tveito, A.: Numerical solution of the bidomain equations. Phil. Trans. R. Soc. A 367(1895), 1931–1950 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Livshitz, L.M., Rudy, Y.: Regulation of \(\text{ Ca}^{2+}\) and electrical alternans in cardiac myocytes: role of CAMKII and repolarizing currents. Am. J. Physiol. Heart Circ. Physiol. 292, H2854–H2866 (2007)

    Article  Google Scholar 

  24. Mandel, J.: Balancing domain decomposition. Commun. Numer. Methods Eng. 9(3), 233–241 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mandel, J., Brezina, M.: Balancing domain decomposition for problems with large jumps in coefficients. Math. Comput. 65(216), 1387–1401 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Marcinkowski, L.: A balancing Neumann–Neumann method for a mortar finite element discretization of a fourth order elliptic problem. J. Numer. Math. 18(3), 219–234 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mardal, K.A., Nielsen, B.F., Cai, X., Tveito, A.: An order optimal solver for the discretized bidomain equations. Numer. Linear Algebra Appl. 14(2), 83–98 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mathew, T.: Domain decomposition methods for the numerical solution of partial differential equations. In: Lecture Notes in Computational Science and Engineering. Springer, Berlin (2008)

  29. Munteanu, M., Pavarino, L.F.: Decoupled Schwarz algorithms for implicit discretization of nonlinear monodomain and bidomain systems. Math. Models Methods Appl. Sci. 19(7), 1065–1097 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Munteanu, M., Pavarino, L.F., Scacchi, S.: A scalable Newton–Krylov–Schwarz method for the bidomain reaction–diffusion system. SIAM J. Sci. Comput. 31(5), 3861–3883 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Murillo, M., Cai, X.-C.: A fully implicit parallel algorithm for simulating the non-linear electrical activity of the heart. Numer. Linear Algebra Appl. 11(2–3), 261–277 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Neu, J.S., Krassowska, W.: Homogeneization of syncytial tissues. Crit. Rev. Biomed. Eng. 21, 137–199 (1993)

    Google Scholar 

  33. Pathmanathan, P., Bernabeu, M.O., Bordas, R., Cooper, J., Garny, A., Pitt-Francis, J.M., Whiteley, J.P., Gavaghan, D.J.: A numerical guide to the solution of the bidomain equations of cardiac electrophysiology. Prog. Biophys. Mol. Biol. 102, 136–155 (2010)

    Article  Google Scholar 

  34. Pavarino, L.F.: Neumann–Neumann algorithms for spectral elements in three dimensions. RAIRO M2AN 31(4), 471–493 (1997)

    MathSciNet  MATH  Google Scholar 

  35. Pavarino, L.F., Widlund, O.B.: Balancing Neumann–Neumann methods for incompressible Stokes equations. Commun. Pure Appl. Math. 55(3), 302–335 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pavarino, L.F., Scacchi, S.: Multilevel additive Schwarz preconditioners for the Bidomain reaction–diffusion system. SIAM J. Sci. Comput. 31(1), 420–443 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pavarino, L.F., Scacchi, S.: Parallel multilevel Schwarz and block preconditioners for the Bidomain parabolic–parabolic and parabolic–elliptic formulations. SIAM J. Sci. Comput. 33(4), 1897–1919 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pennacchio, M., Savaré, G., Colli Franzone, P.: Multiscale modeling for the bioelectric activity of the heart. SIAM J. Math. Anal. 4, 1333–1370 (2005)

    Article  Google Scholar 

  39. Pennacchio, M., Simoncini, V.: Algebraic multigrid preconditioners for the bidomain reaction–diffusion system. Appl. Numer. Math. 59, 3033–3050 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pennacchio, M., Simoncini, V.: Fast structured AMG preconditioning for the bidomain model in electrocadiology. Tech. Report IMATI-PV n. 16PV10/16/0, 1–23 (2010)

  41. Plank, G., Liebmann, M., Weber dos Santos, R., Vigmond, E., Haase, G.: Algebraic multigrid preconditioner for the cardiac bidomain model. IEEE Trans. Biomed. Eng. 54(4), 585–596 (2007)

    Article  Google Scholar 

  42. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (1994)

    MATH  Google Scholar 

  43. Rudy, Y., Silva, J.R.: Computational biology in the study of cardiac ion channels and cell electrophysiology. Q. Rev. Biophys. 39, 57–116 (2006)

    Article  Google Scholar 

  44. Scacchi, S.: A hybrid multilevel Schwarz method for the bidomain model. Comput. Methods Appl. Mech. Eng. 197(48), 4051–4061 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Scacchi, S.: A multilevel hybrid Newton–Krylov–Schwarz method for the Bidomain model of electrocardiology. Comput. Methods Appl. Mech. Eng. 200(8), 717–725 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Southern, J.A., Plank, G., Vigmond, E.J., Whiteley, J.P.: Solving the coupled system improves computational efficiency of the Bidomain equations. IEEE Trans. Biomed. Eng. 56(10), 2404–2412 (2009)

    Article  Google Scholar 

  47. Sundnes, J., Lines, G.T., Mardal, K.A., Tveito, A.: Multigrid block preconditioning for a coupled system of partial differential equations modeling the electrical activity in the heart. Comput. Methods Biomech. Biomed. Eng. 5(6), 397–409 (2002)

    Article  Google Scholar 

  48. Toselli, A.: Neumann–Neumann methods for vector field problems. ETNA 11, 1–24 (2000)

    MathSciNet  MATH  Google Scholar 

  49. Toselli, A., Widlund, O.B.: Domain Decomposition Methods—Algorithms and Theory. Springer, Berlin (2005)

    MATH  Google Scholar 

  50. Vigmond, E., Aguel, F., Trayanova, N.A.: Computational techniques for solving the bidomain equations in three dimensions. IEEE Trans. Biomed. Eng. 49, 1260–1269 (2002)

    Article  Google Scholar 

  51. Vigmond, E., Weber dos Santos, R., Prassl, A.J., Deo, M., Plank, G.: Solvers for the cardiac bidomain equations. Prog. Biophys. Mol. Biol. 96, 3–18 (2008)

    Article  Google Scholar 

  52. Weber dos Santos, R., Plank, G., Bauer, S., Vigmond, E.J.: Parallel multigrid preconditioner for the cardiac bidomain model. IEEE Trans. Biomed. Eng. 51(11), 1960–1968 (2004)

    Article  Google Scholar 

  53. Zampieri, E., Pavarino, L.F.: Implicit spectral element methods and Neumann–Neumann preconditioners for acoustic waves. Comput. Methods Appl. Mech. Eng. 195, 2649–2673 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zampini, S.: Non-overlapping domain decomposition methods for three-dimensional cardiac reaction-diffusion models with applications, Ph.D. Thesis, Universitá degli Studi di Milano, Department of Mathematics (2010). http://air.unimi.it/handle/2434/150076

Download references

Acknowledgments

The author wish to thanks Prof. Luca Pavarino for his trust and mentoring, and to have introduced him to domain decomposition methods. The author would also like to thank the anonymous referees for their valuable comments which improved the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Zampini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zampini, S. Balancing Neumann–Neumann methods for the cardiac Bidomain model. Numer. Math. 123, 363–393 (2013). https://doi.org/10.1007/s00211-012-0488-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-012-0488-2

Mathematics Subject Classification (2000)

Navigation