Skip to main content
Log in

Modified edge finite elements for photonic crystals

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider Maxwell’s equations with periodic coefficients as it is usually done for the modeling of photonic crystals. Using Bloch/Floquet theory, the problem reduces in a standard way to a modification of the Maxwell cavity eigenproblem with periodic boundary conditions. Following [8], a modification of edge finite elements is considered for the approximation of the band gap. The method can be used with meshes of tetrahedrons or parallelepipeds. A rigorous analysis of convergence is presented, together with some preliminary numerical results in 2D, which fully confirm the robustness of the method. The analysis uses well established results on the discrete compactness for edge elements, together with new sharper interpolation estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amrouche C., Bernardi C., Dauge M., Girault V. (1998) Vector potential in three-dimensional nonsmooth domains. Math. Methods Appl. Sci. 21(9): 823–864

    Article  MATH  MathSciNet  Google Scholar 

  2. Arnold D.N., Boffi D., Falk R.S., Quadrilateral H (2005)(div) finite elements. SIAM J. Numer. Anal. 42: 2429–2451

    Article  MATH  MathSciNet  Google Scholar 

  3. Babuška I., Osborn J. (1991) Eigenvalue problems. In: Handbook of Numerical Analysis, Vol. II, pp. 641–787. North-Holland, Amsterdam

  4. Boffi D. (2000) Fortin operator and discrete compactness and for edge elements. Numer. Math. 87(2): 229–246

    Article  MATH  MathSciNet  Google Scholar 

  5. Boffi D., Brezzi F., Gastaldi L. (1997) On the convergence of eigenvalues for mixed formulations. Ann. Sc. Norm. Sup. Pisa 25, 131–154

    MATH  MathSciNet  Google Scholar 

  6. Costabel M., Dauge M., Nicaise S. (1999) Singularities of Maxwell interface problems. M2AN Math. Model. Numer. Anal. 33(3): 627–649

    MathSciNet  Google Scholar 

  7. Dobson D.C., Gopalakrishnan J., Pasciak J.E. (2000) An efficient method for band structure calculations in 3D photonic crystals. J. Comput. Phys. 161(2): 668–679

    Article  MATH  MathSciNet  Google Scholar 

  8. Dobson D.C., Pasciak J.E. (2001) Analysis of an algorithm for computing electromagnetic Bloch modes using Nedelec spaces. Comput. Methods Appl. Math. 1(2): 138–153

    MATH  MathSciNet  Google Scholar 

  9. Dupont T., Scott R. (1980) Polynomial approximation of functions in Sobolev spaces. Math. Comput. 34(150): 441–463

    Article  MATH  MathSciNet  Google Scholar 

  10. Figotin A., Kuchment P. (1996) Band-gap structure of spectra of periodic dielectric and acoustic media. I. Scalar model. SIAM J. Appl. Math. 56(1): 68–88

    Article  MATH  MathSciNet  Google Scholar 

  11. Figotin A., Kuchment P. (1996) Band-gap structure of spectra of periodic dielectric and acoustic media. II. Two-dimensional photonic crystals. SIAM J. Appl. Math. 56(6): 1561–1620

    Article  MATH  MathSciNet  Google Scholar 

  12. Hiptmair R.: Finite elements in computational electromagnetism. In: Acta Numerica vol. 11, pp. 237–339 (2002)

  13. Joannopoulos J.D., Meade R.D., Winn J.N. (1995) Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton

    Google Scholar 

  14. Kikuchi F. (1987) Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism. Comput. Methods Appl. Mech. Eng. 64, 509–521

    Article  MATH  MathSciNet  Google Scholar 

  15. Kikuchi F. Numerical analysis of electrostatic and magnetostatic problems [translation of Sûgaku 42(4) 332–345 (1990); MR1083943 (92c:78002)]. Sugaku Expo. 6(1), 33–51 (1993)

    Google Scholar 

  16. Kittel C. Solid State Physics. Wiley New York (1986)

  17. Monk P. (2003) Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford

    Google Scholar 

  18. Nédélec J.-C. (1980) Mixed finite elements in \(\mathbb{R}^{3}\). Numer. Math. 35(3): 315–341

    Article  MATH  MathSciNet  Google Scholar 

  19. Nédélec J.C. (1982) Éléments finis mixtes incompressibles pour l’équation de Stokes dans \(\mathbb{R}^{3}\). Numer. Math. 39, 97–112

    Article  MATH  MathSciNet  Google Scholar 

  20. Simoncini V. (2003) Algebraic formulations for the solution of the nullspace-free eigenvalue problem using the inexact shift-and-invert Lanczos method. Numer. Linear Algebra Appl. 10(4): 357–375

    Article  MATH  MathSciNet  Google Scholar 

  21. Soukoulis C.M. (ed) (1996) Photonic Band Gap Materials. Kluwer, Dordrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Boffi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boffi, D., Conforti, M. & Gastaldi, L. Modified edge finite elements for photonic crystals. Numer. Math. 105, 249–266 (2006). https://doi.org/10.1007/s00211-006-0037-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-006-0037-y

Mathematics Subject Classification

Navigation