Skip to main content
Log in

Competitive association binding kinetic assays: a new tool to detect two different binding orientations of a ligand to its target protein under distinct conditions?

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Within the last years, for several ligands, binding to G protein-coupled receptors or other target proteins, a binding of the ligand in two different orientations is described. One appropriate experimental technique to detect two different binding orientations is the crystallization of the ligand-protein-complex, but crystallization and subsequent X-ray analysis do not belong to the routine methods. By traditional competitive radioligand equilibrium binding assays, it is not possible to detect or to distinguish between two different binding orientations, but there is a possibility to identify two different binding orientations by performing kinetic competitive radioligand-binding assays. To study the limitations of this new technique, the related differential equations were defined and solved numerically for 8 different sets of rate constants, also considering an experimental error up to ~10%. In principal, the kinetic competitive radioligand binding assay is a suitable technique to detect two different ligand binding orientations. However, the present study shows that this is only possible under distinct conditions: (1) the rate constants of dissociation for both binding orientations of the cold ligand should at least be >> 10-fold different to each other and (2) the experimental error should be as small as possible. Although there are some limitations for the experimental usability of this method, it is worthwhile to perform kinetic competitive binding assays, especially if there are hints for two binding orientations of a ligand, e.g. based on molecular modelling studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Birnkammer T, Spickenreither A, Brunskole I, Lopuch M, Kagermeier N, Bernhardt G, Dove S, Seifert R, Elz S, Buschauer A (2012) The bivalent ligand approach leads to highly potent and selective acylguanidine-type histamine H2 receptor agonists. J Med Chem 55:1147–1160

    Article  CAS  PubMed  Google Scholar 

  • Bock A, Chirinda B, Krebs F, Messerer R, Batz J, Muth M, Dallanoce C, Klingenthal D, Trankle C, Hoffmann C, De Amici M, Holzgrabe U, Kostenis E, Mohr K (2014) Dynamic ligand binding dictates partial agonism at a G protein-coupled receptor. Nat Chem Biol 10:18–20

    Article  CAS  PubMed  Google Scholar 

  • Bruning JB, Parent AA, Gil G, Zhao M, Nowak J, Pace MC, Smith CL, Afonine PV, Adams PD, Katzenellenbogen JA, Nettles KW (2010) Coupling of receptor conformation and ligand orientation determine graded activity. Nat Chem Biol 6:837–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Copeland RA (2011) Conformational adaptation in drug-target interactions and residence time. Future Med Chem 3:1491–1501

    Article  CAS  PubMed  Google Scholar 

  • Copeland RA, Pompliano DL, Meek TD (2006) Drug-target residence time and its implications for lead optimization. Nat Rev Drug Discov 5:730–739

    Article  CAS  PubMed  Google Scholar 

  • Deml KF, Beermann S, Neumann D, Strasser A, Seifert R (2009) Interactions of histamine H1-receptor agonists and antagonists with the human histamine H4-receptor. Mol Pharmacol 76:1019–1030

    Article  CAS  PubMed  Google Scholar 

  • Elz S, Kramer K, Pertz HH, Detert H, ter Laak AM, Kuhne R, Schunack W (2000) Histaprodifens: synthesis, pharmacological in vitro evaluation, and molecular modeling of a new class of highly active and selective histamine H1-receptor agonists. J Med Chem 43:1071–1084

    Article  CAS  PubMed  Google Scholar 

  • Guo D, Hillger JM, IJzerman AP, Heitman LH (2014) Drug-target residence time—a case for G protein-coupled receptors. Med Res Rev 34:856–892

    Article  CAS  PubMed  Google Scholar 

  • Hughes JP, Rees S, Kalindjian SB, Philpott KL (2011) Principles of early drug discovery. Br J Pharmacol 162:1239–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacoby E, Bouhelal R, Gerspacher M, Seuwen K (2006) The 7 TM G-protein-coupled receptor target family. ChemMedChem 1:761–782

    Article  PubMed  Google Scholar 

  • Motulsky HJ, Mahan LC (1984) The kinetics of competitive radioligand binding predicted by the law of mass action. Mol Pharmacol 25:1–9

    CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nwachukwu JC, Srinivasan S, Bruno NE, Parent AA, Hughes TS, Pollock JA, Gjyshi O, Cavett V, Nowak J, Garcia-Ordonez RD, Houtman R, Griffin PR, Kojetin DJ, Katzenellenbogen JA, Conkright MD, Nettles KW (2014) Resveratrol modulates the inflammatory response via an estrogen receptor-signal integration network. elife 3:e02057

    Article  PubMed  PubMed Central  Google Scholar 

  • Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996

    Article  CAS  PubMed  Google Scholar 

  • Pawson AJ, Sharman JL, Benson HE, Faccenda E, Alexander SP, Buneman OP, Davenport AP, McGrath JC, Peters JA, Southan C, Spedding M, Yu W, Harmar AJ, Nc I (2014) The IUPHAR/BPS guide to PHARMACOLOGY: an expert-driven knowledgebase of drug targets and their ligands. Nucleic Acids Res 42:D1098–D1106

    Article  CAS  PubMed  Google Scholar 

  • Seifert R, Strasser A, Schneider EH, Neumann D, Dove S, Buschauer A (2013) Molecular and cellular analysis of human histamine receptor subtypes. Trends Pharmacol Sci 34:33–58

    Article  CAS  PubMed  Google Scholar 

  • Sencanski M, Dosen-Micovic L (2014) In silico study of the structurally similar ORL1 receptor agonist and antagonist pairs reveal possible mechanism of receptor activation. Protein J 33:231–242

    Article  CAS  PubMed  Google Scholar 

  • Shim J, Coop A, MacKerell AD Jr (2013) Molecular details of the activation of the mu opioid receptor. J Phys Chem B 117:7907–7917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strasser A, Wittmann HJ (2010) 3D-QSAR CoMFA study to predict orientation of suprahistaprodifens and phenoprodifens in the binding-pocket of four histamine H1-receptor species. Molecular informatics 29:333–341

    Article  CAS  PubMed  Google Scholar 

  • Strasser A, Striegl B, Wittmann HJ, Seifert R (2008) Pharmacological profile of histaprodifens at four recombinant H1-receptor species isoforms. J Pharmacol Exp Ther 324:60–71

    Article  CAS  PubMed  Google Scholar 

  • Strasser A, Wittmann HJ, Kunze M, Elz S, Seifert R (2009) Molecular basis for the selective interaction of synthetic agonists with the human histamine H1-receptor compared with the Guinea pig H1-receptor. Mol Pharmacol 75:454–465

    Article  CAS  PubMed  Google Scholar 

  • Strasser A, Wittmann H-J, Buschauer A, Schneider EH, Seifert R (2013) Species-dependent activities of GPCR ligands: lessons from histamine receptor orthologs. Trends Pharmacol Sci 34:13–32

    Article  CAS  PubMed  Google Scholar 

  • Tummino PJ, Copeland RA (2008) Residence time of receptor-ligand complexes and its effect on biological function. Biochemistry 47:5481–5492

    Article  CAS  PubMed  Google Scholar 

  • Vauquelin G (2016) Effects of target binding kinetics on in vivo drug efficacy: koff , kon and rebinding. Br J Pharmacol 173:2319–2334

    Article  CAS  PubMed  Google Scholar 

  • Wittmann HJ, Seifert R, Strasser A (2011) Influence of the N-terminus and the E2-loop onto the binding kinetics of the antagonist mepyramine and the partial agonist phenoprodifen to H(1)R. Biochem Pharmacol 82:1910–1918

    Article  CAS  PubMed  Google Scholar 

  • Zanatta G, Della Flora Nunes G, Bezerra EM, da Costa RF, Martins A, Caetano EW, Freire VN, Gottfried C (2016) Two binding geometries for risperidone in dopamine D3 receptors: insights on the fast-off mechanism through docking, quantum biochemistry, and molecular dynamics simulations. ACS Chem Neurosci 7:1331–1347

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Strasser.

Electronic supplementary material

ESM 1

(PDF 989 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wittmann, HJ., Strasser, A. Competitive association binding kinetic assays: a new tool to detect two different binding orientations of a ligand to its target protein under distinct conditions?. Naunyn-Schmiedeberg's Arch Pharmacol 390, 595–612 (2017). https://doi.org/10.1007/s00210-017-1362-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-017-1362-7

Keywords

Navigation