Skip to main content
Log in

Epigallocatechin-3-gallate inhibits angiotensin II-induced C-reactive protein generation through interfering with the AT1-ROS-ERK1/2 signaling pathway in hepatocytes

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Inflammation plays a key role in many chronic diseases such as cardiovascular diseases and liver diseases. As a representative inflammatory molecule, C-reactive protein (CRP) is mainly produced in the liver. Hepatic CRP plays a direct role in the inflammatory hepatic diseases and in development of atherosclerosis when entering into the blood circulation. In the present study, we observed the effect of epigallocatechin-3-gallate (EGCG) on Ang II-induced CRP generation in hepatocytes and the molecular mechanism. Rats were delivered with the subcutaneous infusion of Ang II and/or intragastric administration of EGCG for 7 days. Hepatocytes were pretreated with EGCG before stimulation with Ang II in vitro. CRP level in the serum and liver was determined with ELISA and the immunohistochemical staining. RNA and protein expressions were determined using RT-PCR and Western blot. The in vivo experiment confirmed that EGCG reduced not only CRP generation in the liver of Ang II-infused rats but also serum CRP level. The in vitro results showed that pretreatment of hepatocytes with EGCG inhibited Ang II-induced mRNA and protein expression of CRP in a concentration-dependent manner. Further study exhibited that EGCG downregulated AT1 expression, attenuated Ang II-activated phosphorylation of ERK1/2, and upregulated Ang II-inhibited peroxisome proliferator-activated receptor gamma (PPARγ) expression in vitro and in vivo. In addition, EGCG decreased Ang II-stimulated reactive oxygen species (ROS) generation in hepatocytes. These demonstrate that EGCG is able to inhibit Ang II-induced CRP generation by interfering with AT1-ROS-ERK1/2 signal pathway in hepatocytes, which provides the new evidence and mechanism for the anti-inflammatory effect of EGCG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aktas O, Prozorovski T, Smorodchenko A, Savaskan NE, Lauster R, Kloetzel PM, Infante-Duarte C, Brocke S, Zipp F (2004) Green tea epigallocatechin-3-gallate mediates T cellular NF-kappa B inhibition and exerts neuroprotection in autoimmune encephalomyelitis. J Immunol 173:5794–5800

    Article  CAS  PubMed  Google Scholar 

  • Bansal S, Syan N, Mathur P, Choudhary S (2012) Pharmacological profile of green tea and its polyphenols: a review. Med Chem Res 21:3347–3360

    Article  CAS  Google Scholar 

  • Bataller R, Gäbele E, Schoonhoven R, Morris T, Lehnert M, Yang L, Brenner DA, Rippe RA (2003) Prolonged infusion of angiotensin II into normal rats induces stellate cell activation and proinflammatory events in liver. Am J Physiol Gastrointest Liver Physiol 285:G642–G651. doi:10.1152/ajpgi.00037.2003

    Article  CAS  PubMed  Google Scholar 

  • Borato DG, Scoparo CT, Maria-Ferreira D, da Silva LM, de Souza LM, Iacomini M, Werner MF, Baggio CH (2016) Healing mechanisms of the hydroalcoholic extract and ethyl acetate fraction of green tea (Camellia sinensis (L.) Kuntze) on chronic gastric ulcers. Naunyn Schmiedeberg's Arch Pharmacol 389:259–268. doi:10.1007/s00210-015-1200-8

    Article  CAS  Google Scholar 

  • Bota DP, Van Nuffelen M, Zakariah AN, Vincent J-L (2005) Serum levels of C-reactive protein and procalcitonin in critically ill patients with cirrhosis of the liver. J Lab Clin Med 146:347–351

    Article  CAS  PubMed  Google Scholar 

  • Cervoni JP, Thévenot T, Weil D, Muel E, Barbot O, Sheppard F, Monnet E, Di Martino V (2012) C-reactive protein predicts short-term mortality in patients with cirrhosis. J Hepatol 56:1299–1304

    Article  CAS  PubMed  Google Scholar 

  • Dasarathy S (2008) Inflammation and liver. J Parenter Enter Nutr 32:660–666

    Article  CAS  Google Scholar 

  • Frei B, Higdon JV (2003) Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. J Nutr 133:3275S–3284S

    CAS  PubMed  Google Scholar 

  • Han CJ, Liu JT, Li M, Cui M, Pang XM, Mao JJ, Liu XF (2012) Rosiglitazone inhibits angiotensin II-induced C-reactive protein production in human aortic endothelial cells through regulating AT(1)-ROS-MAPK signal pathway. Inflamm Res 61:1031–1037. doi:10.1007/s00011-012-0496-9

    Article  CAS  PubMed  Google Scholar 

  • Ji YY, Liu JT, Wang ZD, Liu N, Gou W (2009) PPARγ agonist, rosiglitazone, regulates angiotensin II-induced vascular inflammation through the TLR4-dependent signaling pathway. Lab Investig 89:887–902

    Article  CAS  PubMed  Google Scholar 

  • Joo SY, Song YA, Park YL, Myung E, Chung CY, Park KJ, Cho SB, Lee WS, Kim HS, Rew JS, Kim NS, Joo YE (2012) Epigallocatechin-3-gallate inhibits LPS-induced NF-κB and MAPK signaling pathways in bone marrow-derived macrophages. Gut Liver 6:188–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan N, Afaq F, Saleem M, Ahmad N, Mukhtar H (2006) Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Res 66:2500–2505. doi:10.1158/0008-5472.can-05-3636

    Article  CAS  PubMed  Google Scholar 

  • Kundu JK, Na HK, Chun KS, Kim YK, Lee SJ, Lee SS, Lee OS, Sim YC, Surh YJ (2003) Inhibition of phorbol ester-induced COX-2 expression by epigallocatechin gallate in mouse skin and cultured human mammary epithelial cells. J Nutr 133:3805S–3810S

    CAS  PubMed  Google Scholar 

  • Li M, Liu JT, Pang XM, Han CJ, Mao JJ (2012) Epigallocatechin-3-gallate inhibits angiotensin II and interleukin-6-induced C-reactive protein production in macrophages. Pharmacol Rep 64:912–918

    Article  CAS  PubMed  Google Scholar 

  • Lugo-Baruqui A, Munoz-Valle JF, Arevalo-Gallegos S, Armendariz-Borunda J (2010) Role of angiotensin II in liver fibrosis-induced portal hypertension and therapeutic implications. Hepatol Res 40:95–104. doi:10.1111/j.1872-034X.2009.00581.x

    Article  CAS  PubMed  Google Scholar 

  • Mazzanti G, Menniti-Ippolito F, Moro PA, Cassetti F, Raschetti R, Santuccio C, Mastrangelo S (2009) Hepatotoxicity from green tea: a review of the literature and two unpublished cases. Eur J Clin Pharmacol 65:331–341

    Article  PubMed  Google Scholar 

  • Min Q, Bai YT, Jia G, Wu J, Xiang JZ (2010) High glucose enhances angiotensin-II-mediated peroxisome proliferation-activated receptor-?3 inactivation in human coronary artery endothelial cells. Exp Mol Pathol 88:133–137

    Article  CAS  PubMed  Google Scholar 

  • Peng A, Ye T, Rakheja D, Tu Y, Wang T, Du Y, Zhou JK, Vaziri ND, Hu Z, Mohan C, Zhou XJ (2011) The green tea polyphenol (−)-epigallocatechin-3-gallate ameliorates experimental immune-mediated glomerulonephritis. Kidney Int 80:601–611

    Article  CAS  PubMed  Google Scholar 

  • Peng N, Liu JT, Guo F, Li R (2010) Epigallocatechin-3-gallate inhibits interleukin-6-and angiotensin II-induced production of C-reactive protein in vascular smooth muscle cells. Life Sci 86:410–415. doi:10.1016/j.lfs.2010.01.010

    Article  CAS  PubMed  Google Scholar 

  • Ridker PM (2003) Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 107:363–369

    Article  PubMed  Google Scholar 

  • Sarkar D, Fisher PB (2006) Molecular mechanisms of aging-associated inflammation. Cancer Lett 236:13–23

    Article  CAS  PubMed  Google Scholar 

  • Shimizu M, Sakai H, Shirakami Y, Yasuda Y, Kubota M, Terakura D, Baba A, Ohno T, Hara Y, Tanaka T, Moriwaki H (2011) Preventive effects of (−)-epigallocatechin gallate on diethylnitrosamine-induced liver tumorigenesis in obese and diabetic C57BL/KsJ-db/db mice. Cancer Prev Res 4:396–403

    Article  CAS  Google Scholar 

  • Singh BN, Shankar S, Srivastava RK (2011) Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 82:1807–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabo G, Mandrekar P, Dolganiuc A (2007) Innate immune response and hepatic inflammation. Semin Liver Dis 27:339–350

    Article  CAS  PubMed  Google Scholar 

  • Takabayashi F, Tahara S, Kaneko T, Harada N (2004) Effect of green tea catechins on oxidative DNA damage of hamster pancreas and liver induced by N-Nitrosobis (2-oxopropyl) amine and/or oxidized soybean oil. Biofactors 21:335–337

    Article  CAS  PubMed  Google Scholar 

  • Tipoe GL, Leung TM, Liong EC, Lau TYH, Fung ML, Nanji AA (2010) Epigallocatechin-3-gallate (EGCG) reduces liver inflammation, oxidative stress and fibrosis in carbon tetrachloride (CCl4)-induced liver injury in mice. Toxicology 273:45–52. doi:10.1016/j.tox.2010.04.014

    Article  CAS  PubMed  Google Scholar 

  • Uchihara M, Izumi N (2006) High-sensitivity C-reactive protein (hs-CRP): a promising biomarker for the screening of non-alcoholic steatohepatitis (NASH). Nihon Rinsho 64:1133–1138

    PubMed  Google Scholar 

  • Uchiyama Y, Suzuki T, Mochizuki K, Goda T (2013) Dietary supplementation with a low dose of (−)-epigallocatechin-3-gallate reduces pro-inflammatory responses in peripheral leukocytes of non-obese type 2 diabetic GK rats. J Nutr Sci Vitaminol 59:541–547

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Chen K, Whaley-Connell AT, Stump CS, Ibdah JA, Sowers JR (2008) Skeletal muscle insulin resistance: role of inflammatory cytokines and reactive oxygen species. Am J Physiol-Regu I 294:R673–R680

    CAS  Google Scholar 

  • Willerson JT, Ridker PM (2004) Inflammation as a cardiovascular risk factor. Circulation 109:II-2-II-10

  • Yang FJ, Oz HS, Barve S, De Villiers WJS, McClain CJ, Varilek GW (2001) The green tea polyphenol (−)-epigallocatechin-3-gallate blocks nuclear factor-kappa B activation by inhibiting I kappa B kinase activity in the intestinal epithelial cell line IEC-6. Mol Pharmacol 60:528–533

    CAS  PubMed  Google Scholar 

  • Zhao JJ, Liu JT, Pang XM, Wang SY, Wu D, Zhang XL, Feng LX (2013) Angiotensin II induces C-reactive protein expression via AT1-ROS-MAPK-NF-kappa B signal pathway in hepatocytes. Cell Physiol Biochem 32:569–580. doi:10.1159/000354461

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juntian Liu.

Ethics declarations

All the experimental procedures carried out in this study are performed in accordance with the Guidelines for the Care and Use of Laboratory Animals of Xi’an Jiaotong University and approved by the Institutional Animal Care Committee of Xi’an Jiaotong University.

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Liu, J., Pang, X. et al. Epigallocatechin-3-gallate inhibits angiotensin II-induced C-reactive protein generation through interfering with the AT1-ROS-ERK1/2 signaling pathway in hepatocytes. Naunyn-Schmiedeberg's Arch Pharmacol 389, 1225–1234 (2016). https://doi.org/10.1007/s00210-016-1279-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-016-1279-6

Keywords

Navigation