Skip to main content
Log in

Glucoregulatory, endocrine and morphological effects of [P5K]hymenochirin-1B in mice with diet-induced glucose intolerance and insulin resistance

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The frog skin host-defence peptide hymenochirin-1B has been shown to stimulate insulin release in vitro from isolated pancreatic islets and BRIN-BD11 clonal β-cells. This study examines the effects of 28-day administration of a more potent analogue [P5K]hymenochirin-1B ([P5K]hym-1B) (75 nmol·kg−1 body weight) to high-fat-fed mice with obesity, glucose intolerance and insulin resistance. Treatment with [P5K]hym-1B significantly decreased plasma glucose concentrations and improved glucose tolerance, insulin secretion, insulin sensitivity and increased the magnitude of the incretin effect (difference in response to oral vs intraperitoneal glucose loads). Responses to established insulin secretagogues were greater in islets isolated from treated animals compared with saline-treated controls. [P5K]hym-1B administration significantly decreased total islet area and β- and α-cell areas, and resulted in lower concentrations of circulating triglycerides and plasma and pancreatic glucagon. Peptide treatment had no effect on food intake, body weight, indirect calorimetry or circulating concentrations of amylase and marker enzymes of liver and kidney function. RT-PCR demonstrated that the Insr (insulin receptor) gene and genes involved in insulin signalling (Slc2a4, Irs1, Pik3ca, Akt1 and Pkd1) were significantly up-regulated in skeletal muscle from animals treated with [P5K]hym-1B. Expression of the Glp1r (GLP-1 receptor) and Gipr (GIP receptor) genes was significantly elevated in islets from peptide-treated mice. These data suggest that [P5K]hym-1B shows potential for development into an agent for treating patients with type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Attoub S, Arafat H, Mechkarska M, Conlon JM (2013) Anti-tumour activities of the host-defense peptide hymenochirin-1B. Regul Pept 187:51–56

    Article  CAS  PubMed  Google Scholar 

  • Cerf ME (2013) Beta cell dysfunction and insulin resistance. Front Endocrinol 4:1–12

    Article  Google Scholar 

  • Conlon JM, Mechkarska M, Lukic ML, Flatt PR (2014) Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents. Peptides 57:67–77

    Article  CAS  PubMed  Google Scholar 

  • Cryer PE (2012) Glucagon in the pathogenesis of hypoglycemia and hyperglycemia in diabetes. Endocrinology 153:1039–1048

    Article  CAS  PubMed  Google Scholar 

  • Derosa G, Carbone A, D’Angelo A, Querci F, Fogari E, Cicero AF, Maffioli P (2012) A randomized, double-blind, placebo-controlled trial evaluating sitagliptin action on insulin resistance parameters and β-cell function. Expert Opin Pharmacother 13:2433–2442

    Article  CAS  PubMed  Google Scholar 

  • Flatt PR, Bailey CJ (1981) Abnormal plasma glucose and insulin responses in heterozygous lean (ob/+) mice. Diabetologia 20:573–577

    Article  CAS  PubMed  Google Scholar 

  • Fröjdö S, Vidal H, Pirola L (2009) Alterations of insulin signaling in type 2 diabetes: a review of the current evidence from humans. Biochim Biophys Acta 1792:83–92

    Article  PubMed  Google Scholar 

  • Garg R, Chen W, Pendergrass M (2010) Acute pancreatitis in type 2 diabetes treated with exenatide or sitagliptin. A retrospective observational pharmacy claims analysis. Diabetes Care 33:2349–2354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Global Burden of Disease Study 2013 (2015) Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the global burden of disease study 2013. Lancet 386:743–800

    Article  Google Scholar 

  • Goto M, Maki T, Kiyoizumi T, Satomi S, Monaco AP (1985) An improved method for isolation of mouse pancreatic islets. Transplantation 40:437–438

    Article  Google Scholar 

  • Holst JJ, Knop FK, Vilsboll T, Krarup T, Madsbad S (2011) Loss of incretin effect is a specific, important, and early characteristic of type 2 diabetes. Diabetes Care 34:S251–S257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hull RL, Andrikopoulos S, Verchere CB, Vidal J, Wang F, Cnop M, Prigeon RL, Kahn SE (2003) Increased dietary fat promotes islet amyloid formation and β-cell secretory dysfunction in a transgenic mouse model of islet amyloid. Diabetes 52:372–379

    Article  CAS  PubMed  Google Scholar 

  • Imai Y, Patel HR, Doliba NM, Matschinsky FM, Tobias JW, Ahima RS (2008) Analysis of gene expression in pancreatic islets from diet-induced obese mice. Physiol Genomics 36:43–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer S, Drake JA 3rd, West R, Mendez C, Tanenberg R (2011) Case report of acute necrotizing pancreatitis associated with combination treatment of sitagliptin and exenatide. Endocr Pract 18:e10–e13

    Article  Google Scholar 

  • Johnson R, McNutt P, MacMahon S, Robson R (1997) Use of the Friedewald formula to estimate LDL-cholesterol in patients with chronic renal failure on dialysis. Clin Chem 43:2183–2184

    CAS  PubMed  Google Scholar 

  • Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444:840–846

    Article  CAS  PubMed  Google Scholar 

  • Kazakos K (2011) Incretin effect: GLP-1, GIP, DPP4. Diabetes Res Clin Pract 93:S32–S36

    Article  Google Scholar 

  • Marshall JA, Bessesen DH (2002) Dietary fat and the development of type 2 diabetes. Diabetes Care 25:620–622

    Article  PubMed  Google Scholar 

  • Martin CMA, Gault VA, McClean S, Flatt PR, Irwin N (2012) Degradation, insulin secretion, glucose-lowering and GIP additive actions of palmitate-derivatised analogues of xenin-25. Biochem Pharmacol 84:312–319

    Article  CAS  PubMed  Google Scholar 

  • Mechkarska M, Prajeep M, Coquet L, Leprince J, Jouenne T, Vaudry H, King JD, Conlon JM (2012) The hymenochirins: a family of host-defense peptides from the Congo dwarf clawed frog Hymenochirus boettgeri (Pipidae). Peptides 35:269–275

    Article  CAS  PubMed  Google Scholar 

  • Mechkarska M, Prajeep M, Radosavljevic GD, Jovanovic IP, Al Baloushi A, Sonnevend A, Lukic ML, Conlon JM (2013) An analog of the host-defense peptide hymenochirin-1B with potent broad-spectrum activity against multidrug-resistant bacteria and immunomodulatory properties. Peptides 50:153–159

    Article  CAS  PubMed  Google Scholar 

  • Mezza T, Muscogiuri G, Sorice GP, Clemente G, Hu J, Pontecorvi A, Holst JJ, Giaccari A, Kulkarni RN (2014) Insulin resistance alters islet morphology in non-diabetic humans. Diabetes 63:995–1007

    Article  Google Scholar 

  • Moffett RC, Irwin N, Francis JM, Flatt PR (2013) Alterations of glucose-dependent insulinotropic polypeptide and expression of genes involved in mammary gland and adipose tissue lipid metabolism during pregnancy and lactation. PLoS One 8:e78560

    Article  PubMed  PubMed Central  Google Scholar 

  • Moffett RC, Vasu S, Thorens B, Drucker DJ, Flatt PR (2014) Incretin receptor null mice reveal key role of GLP-1 but not GIP in pancreatic beta cell adaptation to pregnancy. PLoS One 9:e96863

    Article  PubMed  PubMed Central  Google Scholar 

  • Moffett RC, Patterson S, Irwin N, Flatt PR (2015) Positive effects of GLP-1 receptor activation with liraglutide on pancreatic islet morphology and metabolic control in C57BL/KsJ db/db mice with degenerative diabetes. Diabetes Metab Res Rev 31:248–255

    Article  CAS  PubMed  Google Scholar 

  • Nauck MA, Friedrich N (2013) Do GLP-1–based therapies increase cancer risk? Diabetes Care 36:S245–S252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obanda DN, Ribnicky D, Yu Y, Stephens J, Cefalu WT (2016) An extract of Urtica dioica L. mitigates obesity induced insulin resistance in mice skeletal muscle via protein phosphatase 2 A (PP2A). Sci Rep 6:22222

  • Ojo OO, Conlon JM, Flatt PR, Abdel-Wahab YHA (2013) Frog skin peptides (tigerinin-1R, magainin-AM1, −AM2, CPF-AM1, and PGla-AM1) stimulate secretion of glucagon-like peptide 1 (GLP-1) by GLUTag cells. Biochem Biophys Res Commun 431:14–18

    Article  CAS  PubMed  Google Scholar 

  • Ojo OO, Srinivasan DK, Owolabi BO, Conlon JM, Flatt PR, Abdel-Wahab YHA (2015a) Magainin-AM2 improves glucose homeostasis and beta cell function in high-fat fed mice. Biochim Biophys Acta 1850:80–87

    Article  CAS  PubMed  Google Scholar 

  • Ojo OO, Srinivasan DK, Owolabi BO, Flatt PR, Abdel-Wahab YHA (2015b) Beneficial effects of tigerinin-1R on glucose homeostasis and beta cell function in mice with diet-induced obesity-diabetes. Biochimie 109:18–26

    Article  CAS  PubMed  Google Scholar 

  • O’Neill S, O’Driscoll L (2015) Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obes Rev 16:1–12

    Article  PubMed  Google Scholar 

  • Østergaard L, Frandsen CS, Madsbad S (2016) Treatment potential of the GLP-1 receptor agonists in type 2 diabetes mellitus: a review. Expert Rev Clin Pharmacol 9:241–265

    Article  PubMed  Google Scholar 

  • Owolabi BO, Ojo OO, Srinivasan DK, Conlon JM, Flatt PR, Abdel-Wahab YHA (2016) In vitro and in vivo insulinotropic properties of the multifunctional frog skin peptide hymenochirin-1B: a structure-activity study. Amino Acids 48:535–547

    Article  CAS  PubMed  Google Scholar 

  • Poletto AC, Furuya DT, David-Silva A, Ebersbach-Silva P, Santos CL, Correa-Giannella ML, Passarelli M, Machado UF (2015) Oleic and linoleic fatty acids downregulate Slc2a4/GLUT4 expression via NFKB and SREBP1 in skeletal muscle cells. Mol Cell Endocrinol 401:65–72

    Article  CAS  PubMed  Google Scholar 

  • Roat R, Rao V, Doliba NM, Matschinsky FM, Tobias JW, Garcia E, Ahima RS, Imai Y (2014) Alterations of pancreatic islet structure, metabolism and gene expression in diet-induced obese C57BL/6 J mice. PLoS One 9:e86815

    Article  PubMed  PubMed Central  Google Scholar 

  • Rouse R, Xu L, Stewart S, Zhang J (2014) High fat diet and GLP-1 drugs induce pancreatic injury in mice. Toxicol Appl Pharmacol 276:104–114

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan DK, Ojo OO, Owolabi BO, Conlon JM, Flatt PR, Abdel-Wahab YHA (2015) The frog skin host-defense peptide CPF-SE1 improves glucose tolerance, insulin sensitivity and islet function and decreases plasma lipids in high-fat fed mice. Eur J Pharmacol 764:38–47

    Article  CAS  PubMed  Google Scholar 

  • Turner N, Zeng XY, Osborne B, Rogers S, Ye JM (2016) Repurposing drugs to target the diabetes epidemic. Trends Pharmacol Sci. doi:10.1016/j.tips.2016.01.007

  • Vangoitsenhoven R, Mathieu C, Van der Schueren B (2012) GLP1 and cancer: friend or foe? Endocr Relat Cancer 19:F77–F88

    Article  CAS  PubMed  Google Scholar 

  • Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA (2001) Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 86:1930–1935

    Article  CAS  PubMed  Google Scholar 

  • Winzell MS, Ahren B (2004) The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53:S215–S219

    Article  PubMed  Google Scholar 

  • Ye J (2013) Mechanisms of insulin resistance in obesity. Front Med 7:14–24

    Article  PubMed  PubMed Central  Google Scholar 

  • Younan SM, Rashed LA (2007) Impairment of the insulinotropic effect of gastric inhibitory polypeptide (GIP) in obese and diabetic rats is related to the down-regulation of its pancreatic receptors. Gen Physiol Biophys 26:181–193

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by a project grant from Diabetes UK (grant number 12/0004457) and an award of a University Vice Chancellor Research Studentship to DKS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Michael Conlon.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owolabi, B.O., Ojo, O.O., Srinivasan, D.K. et al. Glucoregulatory, endocrine and morphological effects of [P5K]hymenochirin-1B in mice with diet-induced glucose intolerance and insulin resistance. Naunyn-Schmiedeberg's Arch Pharmacol 389, 769–781 (2016). https://doi.org/10.1007/s00210-016-1243-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-016-1243-5

Keywords

Navigation