Skip to main content
Log in

Antioxidant and anti-inflammatory effects of flavocoxid in high-cholesterol-fed rabbits

Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Flavocoxid is a mixed extract containing baicalin and catechin, and it acts as a dual balanced inhibitor of cyclooxygenase-1 (COX-1) and COX-2 peroxidase enzyme activities with a significant inhibition of 5-lipoxygenase (5-LOX) enzyme activity in vitro. Flavocoxid downregulates gene or protein expression of several inflammatory markers and exerts also strong antioxidant activity in several experimental models. Inflammation and oxidative stress contribute in the pathogenesis of atherosclerosis. In the present study, an experimental rabbit model of hypercholesterolemia was developed and the effects of flavocoxid were evaluated. Rabbits were divided into four groups—normal control, high-cholesterol-diet (HCD)-fed group, HCD plus flavocoxid (20 mg/kg/day), or HCD plus atorvastatin (10 mg/kg/day). Blood samples were collected at the end of the experiment for measuring serum total cholesterol (TC), triglycerides (TGs), high-density lipoprotein cholesterol (HDL-C), C-reactive protein (CRP), malondialdehyde (MDA), reduced glutathione (GSH), and superoxide dismutase (SOD). In addition, the aorta was removed for measurement of antioxidant status, vascular reactivity, and intima/media (I/M) ratio. Elevated levels of serum TC, TGs, LDL-C, and CRP were measured in HCD group. Moreover, HCD caused a significant increase in serum and aortic MDA concomitantly with a reduction in serum and aortic GSH and SOD. Immunohistochemical staining of aortic specimens from HCD-fed rabbits revealed high expression levels of both tumor necrosis factor-alpha (TNF-α) and nuclear factor (NF)-κB. Rabbits in flavocoxid group showed significantly lower levels of serum CRP, serum, and aortic MDA and higher levels of serum HDL-C, serum, and aortic GSH and SOD compared to HCD group. HCD-induced elevations in serum TC and LDL-C did not significantly affected by flavocoxid treatment. Additionally, flavocoxid significantly enhanced rabbit aortic endothelium-dependent relaxation to acetylcholine and decreased the elevated I/M ratio. This effect was confirmed by histopathological examination of the aorta. Moreover, flavocoxid effectively suppresses the release of inflammatory markers. In conclusion, these findings demonstrated that flavocoxid would be useful in preventing oxidative stress, inflammation, and vascular dysfunction induced by HCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Ahmed S, Gul S, Gul H, Zia-Ul-Haq M, Ercisli S (2014) Cyclooxygenase-2 inhibition improves antioxidative defense during experimental hypercholesterolemia. Bosn J Basic Med Sci 14:63–69

    PubMed Central  CAS  PubMed  Google Scholar 

  • Allain CC, Poon LS, Chan CS, Richmond W, Fu PC (1974) Enzymatic determination of total serum cholesterol. Clin Chem 20:470–475

    CAS  PubMed  Google Scholar 

  • Altavilla D, Squadrito F, Bitto A, Polito F, Burnett BP, Di Stefano V, Minutoli L (2009) Flavocoxid, a dual inhibitor of cyclooxygenase and 5-lipoxygenase, blunts pro-inflammatory phenotype activation in endotoxin-stimulated macrophages. Br J Pharmacol 157:1410–1418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Atmaca G (2004) Antioxidant effects of sulfur-containing amino acids. Yonsei Med J 45:776–788

    Article  CAS  PubMed  Google Scholar 

  • Bahorun T, Soobrattee MA, Luximon-Ramma V, Aruoma OI (2006) Free radicals and antioxidants in cardiovascular health and disease. IJMU 1:1–17

    Google Scholar 

  • Barter PJ, Nicholls S, Rye KA, Anantharamaiah GM, Navab M, Fogelman AM (2004) Antiinflammatory properties of HDL. Circ Res 95:764–772

    Article  CAS  PubMed  Google Scholar 

  • Bauer R (1999) Cyclooxygenase and 5-lipoxygenase as targets for medicinal plant research. In: Bohlin L, Bruhn JG (eds) Bioassay methods in natural product research and drug development. Kluwer Academic, Dortrecht/Boston, MA/London, pp. 128–132

    Google Scholar 

  • Bitto A, Minutoli L, David A, Irrera N, Rinaldi M, Venuti FS, Squadrito F, Altavilla D (2012) Flavocoxid, a dual inhibitor of COX-2 and 5-LOX of natural origin, attenuates the inflammatory response and protects mice from sepsis. Crit Care 16:R32

    Article  PubMed Central  PubMed  Google Scholar 

  • Bolayirli IM, Aslan M, Balci H, Altug T, Hacibekiroglu M, Seven A (2007) Effects of atorvastatin therapy on hypercholesterolemic rabbits with respect to oxidative stress, nitric oxide pathway and homocysteine. Life Sci 81:121–127

    Article  CAS  PubMed  Google Scholar 

  • Chappell SP, Lewis MJ, Henderson AH (1987) Effect of lipid feeding on endothelium dependent relaxation in rabbit aortic preparations. Cardiovasc Res 21:34–38

    Article  CAS  PubMed  Google Scholar 

  • Chenevard R, Hurlimann D, Bechir M, Enseleit F, Spieker L, Hermann M (2003) Selective COX-2 inhibition improves endothelial function in coronary artery disease. Circulation 107:405–409

    Article  PubMed  Google Scholar 

  • Cominacini L, Pasini AF, Garbin U, Davoli A, Tosetti ML, Campagnola M, Rigoni A, Pastorino AM, Lo Cascio V, Sawamura T (2000) Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species. J Biol Chem 275:12633–12638

    Article  CAS  PubMed  Google Scholar 

  • Collins T (1993) Endothelial nuclear factor kB and the initiation of atherosclerotic lesions. Lab Investig 68:499–508

    CAS  PubMed  Google Scholar 

  • De Winther MJP, Kanters E, Kraal G, Hofker MH (2005) Nuclear factor κB signaling in atherogenesis. Arterioscler Thromb Vasc Biol 25:904–914

    Article  PubMed  Google Scholar 

  • Diaz MN, Frei B, Vita JA, Keaney Jr JF (1997) Antioxidants and atherosclerotic heart disease. N Engl J Med 337:408–416

    Article  CAS  PubMed  Google Scholar 

  • El-Awady MS, Suddek GM (2014) Agmatine ameliorates atherosclerosis progression and endothelial dysfunction in high cholesterol-fed rabbits. J Pharm Pharmacol 66:835–843

    CAS  PubMed  Google Scholar 

  • El-Bassossy HM, Hassan NA, Mahmoud MF, Fahmy A (2014) Baicalein protects against hypertension associated with diabetes: effect on vascular reactivity and stiffness. Phytomedicine 21:1742–1745

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  • Finley PR, Schifman RB, Williams RJ, Lichti DA (1978) Cholesterol in high-density lipoprotein: use of Mg2+/dextran sulfate in its enzymic measurement. Clin Chem 24:931–933

    CAS  PubMed  Google Scholar 

  • FitzGerald GA (2003) COX-2 and beyond: approaches to prostaglandin inhibition in human disease. Nat Rev Drug Discov 2:879–890

    Article  CAS  PubMed  Google Scholar 

  • Fredrickson DS, Levy RI, Lees RS (1967) Fat transport in lipoproteins—an integrated approach to mechanisms and disorders. N Engl J Med 276:34–42

    Article  CAS  PubMed  Google Scholar 

  • Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    CAS  PubMed  Google Scholar 

  • Galle J, Busse R, Bassenge E (1991) Hypercholesterolemia and atherosclerosis change vascular reactivity in rabbits by different mechanisms. Arterioscler Thromb 11:1712–1718

    Article  CAS  PubMed  Google Scholar 

  • Han J, Wang D, Yu B, Wang Y, Ren H, Zhang B, Wang Y, Zheng Q (2014) Cardioprotection against ischemia/reperfusion by licochalcone B in isolated rat hearts. Oxid Med Cell Longev 2014:134862

    Article  PubMed Central  PubMed  Google Scholar 

  • Hayashi T, Matsui-Hirai H, Fukatsu A, Sumi D, Kano-Hayashi H, Rani PJA, Iguchi A (2006) Selective iNOS inhibitor, ONO1714 successfully retards the development of high-cholesterol diet induced atherosclerosis by novel mechanism. Atherosclerosis 187:316–324

    Article  CAS  PubMed  Google Scholar 

  • Hou X, Han J, Yuan C, Ren H, Zhang Y, Zhang T, Xu L, Zheng Q, Chen W (2015). Cardioprotective effects of total flavonoids extracted from Xinjiang Sprig Rosa rugosa against acute ischemia/reperfusion-induced myocardial injury in isolated rat heart. Cardiovasc Toxicol

  • Jayakody L, Senaratne M, Thomson A, Kappagoda T (1987) Endothelium-dependent relaxation in experimental atherosclerosis in the rabbit. Circ Res 60:251–264

    Article  CAS  PubMed  Google Scholar 

  • Jeon SM, Park YB, Choi MS (2004) Antihypercholesterolemic property of naringin alters plasma and tissue lipids, cholesterol-regulating enzymes, fecal sterol and tissue morphology in rabbits. Clin Nutr 23:1025–1034

    Article  CAS  PubMed  Google Scholar 

  • Krakauer T, Li BQ, Young HA (2001) The flavonoid baicalin inhibits superantigen-induced inflammatory cytokines and chemokines. FEBS Lett 500:52–55

    Article  CAS  PubMed  Google Scholar 

  • Libby P (2007) Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr Rev 65:S140–S146

    Article  PubMed  Google Scholar 

  • Lin C, Ren J, Wang M, Ma X, Liu J (2011) Study of rongban tongmai granule on anti-oxidant stress in atherosclerosis. Zhongguo Zhong Yao Za Zhi 36:195–199

    PubMed  Google Scholar 

  • Marklund SL (1985) Superoxide dismutase isoenzymes in tissues and plasma from New Zealand black mice, nude mice and normal BALB/c mice. Mutat Res 148:129–134

    Article  CAS  PubMed  Google Scholar 

  • Messina S, Bitto A, Aguennouz M, Mazzeo A, Migliorato A, Polito F, Irrera N, Altavilla D, Vita GL, Russo M, Naro A, De Pasquale MG, Rizzuto E, Musarò A, Squadrito F, Vita G (2009) Flavocoxid counteracts muscle necrosis and improves functional properties in mdx mice: a comparison study with methylprednisolone. Exp Neurol 220:349–358

    Article  CAS  PubMed  Google Scholar 

  • Montagnana M, Danese E, Lippi G (2014) Genetic risk factors of atherothrombosis. Pol Arch Med Wewn 124:474–482

    PubMed  Google Scholar 

  • Montecucco F, Mach F (2008) New evidences for C-reactive protein (CRP) deposits in the arterial intima as a cardiovascular risk factor. Clin Interv Aging 3:341–349

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nam NH (2006) Naturally occurring NF-kappaB inhibitors. Mini Rev Med Chem 6:945–951

    Article  CAS  PubMed  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  • Ondrejovičová I, Muchová J, Mišľanová C, Nagyová Z, Duračková Z (2010) Hypercholesterolemia, oxidative stress and gender dependence in children. Prague Med Rep 111:300–312

    PubMed  Google Scholar 

  • Oosterveer DM, Versmissen J, Yazdanpanah M, van der Net JB, Defesche JC, Kastelein JJ, Sijbrands EJ (2009) 5-Lipoxygenase activating protein (ALOX5AP) gene variants associate with the presence of xanthomas in familial hypercholesterolemia. Atherosclerosis 206:223–227

    Article  CAS  PubMed  Google Scholar 

  • Osborne JA, Lento PH, Siegfried MR, Stahl GL, Fusman B, Lefer AM (1989) Cardiovascular effects of acute hypercholesterolemia in rabbits: reversal with lovastatin treatment. J Clin Invest 83:465–473

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park SH, Park JH, Kang JS, Kang YH (2003) Involvement of transcription factors in plasma HDL protection against TNF-alpha-induced vascular cell adhesion molecule-1 expression. Int J Biochem Cell Biol 35:168–182

    Article  CAS  PubMed  Google Scholar 

  • Paffen E, DeMaat MP (2006) C-reactive protein in atherosclerosis: a causal factor? Cardiovasc Res 71:30–39

    Article  CAS  PubMed  Google Scholar 

  • Papageorgiou N, Tousoulis D, Katsargyris A, Charakida M, Androulakis E, Siasos G, Tentolouris C, Stefanadis C (2013) Antioxidant treatment and endothelial dysfunction: is it time for flavonoids? Recent Pat Cardiovasc Drug Discov 8:81–92

    Article  CAS  PubMed  Google Scholar 

  • Pasceri V, Cheng JS, Willerson JT, Yeh ET (2001) Modulation of C-reactive protein-mediated monocyte chemoattractant protein-1 induction in human endothelial cells by anti-atherosclerosis drugs. Circulation 103:2531–2534

    Article  CAS  PubMed  Google Scholar 

  • Polito F, Bitto A, Irrera N, Squadrito F, Fazzari C, Minutoli L, Altavilla D (2010) Flavocoxid, a dual inhibitor of cyclooxygenase-2 and 5-lipoxygenase, reduces pancreatic damage in an experimental model of acute pancreatitis. Br J Pharmacol 161:1002–1011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pronin AV, Danilov LL, Narovlyansky AN, Sanin AV (2014) Plant polyisoprenoids and control of cholesterol level. Arch Immunol Ther Exp 62:31–39

    Article  CAS  Google Scholar 

  • Robbesyn F, Garcia V, Auge N, Vieira O, Frisach MF, Salvayre R, Negre-Salvayre A (2003) HDL counterbalance the proinflammatory effect of oxidized LDL by inhibiting intracellular reactive oxygen species rise, proteasome activation, and subsequent NF-kappaB activation in smooth muscle cells. FASEB J 17:743–745

    CAS  PubMed  Google Scholar 

  • Simonet S, Porro de Bailliencourt J, Descombes JJ, Mennecier P, Laubie M, Verbeuren TJ (1993) Hypoxia causes an abnormal contractile response in the atherosclerotic rabbit aorta: implication of reduced nitric oxide and cGMP production. Circ Res 72:616–630

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo R, Bosco C (2006) Oxidative stress and protective effects of polyphenols: comparative studies in human and rodent kidney. A review. Comp Biochem Physiol C Toxicol Pharmacol 142:317–327

    Article  PubMed  Google Scholar 

  • Stocker R, Keaney Jr JF (2004) Role of oxidative modifications in atherosclerosis. Physiol Rev 84:1381–1478

    Article  CAS  PubMed  Google Scholar 

  • Verbeuren TJ, Bonhomme E, Laubie M, Simonet S (1993) Evidence for induction of non-endothelial NO synthase in aortas of cholesterol-fed rabbits. J Cardiovasc Pharmacol 21:841–845

    Article  CAS  PubMed  Google Scholar 

  • Wagner H (1993) Leading structures of plant origin for drug development. J Ethnopharmacol 38:105–112

    Article  CAS  PubMed  Google Scholar 

  • Yokozawa T, Ishida A, Cho EJ, Nakagawa T (2003) The effects of coptidio rhizoma extract on a hypercholesterolemic animal model. Phytomedicine 10:17–22

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. Mohamed F. Hamed, Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt, for providing assistance.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghada M. Suddek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sheakh, A.R., Ghoneim, H.A., Suddek, G.M. et al. Antioxidant and anti-inflammatory effects of flavocoxid in high-cholesterol-fed rabbits. Naunyn-Schmiedeberg's Arch Pharmacol 388, 1333–1344 (2015). https://doi.org/10.1007/s00210-015-1168-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-015-1168-4

Keywords

Navigation