Skip to main content

Advertisement

Log in

Flavocoxid attenuates gentamicin-induced nephrotoxicity in rats

Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Gentamicin is a widely used antibiotic against serious and life-threatening infections; however, its usefulness is limited by the development of nephrotoxicity. The present study was designed to determine whether flavocoxid has a protective effect against gentamicin-induced nephrotoxicity in rats. For this purpose, we quantitatively evaluated gentamicin-induced renal structural and functional alterations using histopathological and biochemical approaches. Furthermore, the effect of flavocoxid on gentamicin induced hypersensitivity of urinary bladder rings to acetylcholine (ACh) was determined. Twenty-four male Wistar albino rats were randomly divided into three groups, namely control, gentamicin (100 mg/kg, i.p.) and gentamicin plus flavocoxid (20 mg/kg, orally). At the end of the study, all rats were sacrificed and then blood, urine samples and kidneys were collected for further analysis. Gentamicin administration caused a severe nephrotoxicity which was evidenced by an elevated renal somatic index (RSI), serum creatinine, blood urea nitrogen, serum lactate dehydrogenase, and protein in urine with a concomitant reduction in serum albumin and normalized creatinine clearance value as compared with the controls. Moreover, a significant increase in renal contents of malondialdehyde, myeloperoxidase, and tumor necrosis factor-alpha with a significant decrease in renal reduced glutathione and superoxide dismutase activities was detected upon gentamicin administration together with increasing the sensitivity of isolated urinary bladder rings to ACh. Exposure to gentamicin induced necrosis of renal tubular epithelial cells. Flavocoxid protected kidney tissue against the oxidative damage and the nephrotoxic effect caused by gentamicin treatment. In addition, flavocoxid significantly reduced the responses of isolated bladder rings to ACh. The results from our study indicate that flavocoxid supplement attenuates gentamicin-induced renal injury via the amelioration of oxidative stress and inflammation of renal tubular cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali BH, Abdel Gayoum AA, Bashir AA (1992) Gentamicin nephrotoxicity in rat: some biochemical correlates. Pharmacol. Toxicol. 70:419–423

    Article  CAS  PubMed  Google Scholar 

  • Al-Majed AA, Mostafa AM, Al-Rikabi AC, Al-Shabanah OA (2002) Protective effects of oral Arabic gum administration of gentamicin-induced nephrotoxicity in rats. Pharmacol. Res. 46:445–451

    Article  CAS  PubMed  Google Scholar 

  • Altavilla,.D, Squadrito, F., Bitto, A., Polito, F., Burnett, B.P., Di Stefano, V. and Minutoli, L. (2009): Flavocoxid, a dual inhibitor of cyclooxygenase and 5-lipoxygenase, blunts pro-inflammatory phenotype activation in endotoxin-stimulated macrophages. Br J Pharmacol 157: 1410–1418..

  • Altavilla D, Minutoli L, Polito F, Irrera N, Arena S, Magno C, Rinaldi M, Burnett BP, Squadrito F, Bitto A (2012) Effects of flavocoxid, a dual inhibitor of COX and 5-lipoxygenase enzymes, on benign prostatic hyperplasia. Br J Pharmacol. 167:95–108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Armagan A, Kutluhan S, Yilmaz M, Yilmaz N, Bülbül M, Vural H, Soyupek S, Naziroglu M (2008) Topiramate and vitamin E modulate antioxidant enzyme activities, nitric oxide and lipid peroxidation levels in pentylenetetrazol-induced nephrotoxicity in rats. Basic Clin Pharmacol Toxicol 103:166–170

    Article  CAS  PubMed  Google Scholar 

  • Aygün FO, Akçam FZ, Kaya O, Ceyhan BM, Sütçü R (2012) Caffeic acid phenethyl ester modulates gentamicin-induced oxidative nephrotoxicity in kidney of rats. Biol Trace Elem Res. 145:211–216

    Article  PubMed  Google Scholar 

  • Baliga R, Ueda N, Walker PD, Shah SV (1999) Oxidant mechanisms in toxic acute renal failure. Drug Metabol Rev. 31:971–997

    Article  CAS  Google Scholar 

  • Barry M, Cahill RA, Roche-Nagle G, Neilan TG, Treumann A, Harmey JH, Bouchier-Hayes DJ (2009) Neoplasms escape selective COX-2 inhibition in an animal model of breast cancer. Ir J Med Sci 178:201–208

    Article  CAS  PubMed  Google Scholar 

  • Bartels, H., Böhmer, M. and Heierli, C. (1972): Serum creatinine determination without protein precipitation. Clin Chim Acta;37:193–197. [Article in German]..

  • Bitto, A., Minutoli, L., David, A., Irrera, N., Rinaldi, M., Venuti, F.S., Squadrito, F., Altavilla, D. (2012): Flavocoxid, a dual inhibitor of COX-2 and 5-LOX of natural origin, attenuates the inflammatory response and protects mice from sepsis. Crit Care. 22; 16:R32..

  • Burnett BP, Bitto A, Altavilla D, Squadrito F, Levy RM, Pillai L (2011) Flavocoxid inhibits phospholipase A2, peroxidase moieties of the cyclooxygenases (COX), and 5-lipoxygenase, modifies COX-2 gene expression, and acts as an antioxidant. Mediators Inflamm 2011:385780

    Article  PubMed Central  PubMed  Google Scholar 

  • Burnett BP, Jia Q, Zhao Y, Levy RM (2007) A medicinal extract of Scutellaria baicalensis and Acacia catechu acts as a dual inhibitor of cyclooxygenase and 5-lipoxygenase to reduce inflammation. J Med Food 10:442–451

    Article  CAS  PubMed  Google Scholar 

  • Chen LF and Kaye D (2011) Current use for old antibacterial agents: polymyxins, rifamycins, and aminoglycosides. The Medical clinics of North America 95, 819–842, viii–ix..

  • Chou TC, Chang LP, Li CY, Wong CS, Yang SP (2003) The antiinflammatory and analgesic effects of baicalin in carrageenan evoked thermal hyperalgesia. Anesth Analg 97:1724–1729

    Article  CAS  PubMed  Google Scholar 

  • Cunha FQ, Poole S, Lorenzetti BB and Ferreira SH (1992) The pivotal role of tumour necrosis factor alpha in the development of inflammatory hyperalgesia. Br J Pharmacol 107: 660–664..

  • Cuzzocrea S, Mazzon E, Dugo L, Serriano ID, Paola R, Britti D, De Sarro A, Pierpaoli S, Caputi A, Masini E, Salvemini D (2002) A role for superoxide in gentamicin-mediated nephropathy in rats. Eur. J. Pharmacol. 450:67–76

    Article  CAS  PubMed  Google Scholar 

  • Daughaday WH, Lowry OH, Rosebrough, NJ and Fields WS (1952) Determination of cerebrospinal fluid protein with the Folin phenol reagent. J Lab Clin Med 39:663–665..

  • Dey A, Maric C, Kaesemeyer WH, Zaharis CZ, Stewart J, Pollock JS, Imig JD (2004) Rofecoxib decreases renal injury in obese Zucker rats. Clin Sci 107:561–570

    Article  CAS  PubMed  Google Scholar 

  • Doumas BT, Watson WA, Biggs HG (1971) Albumin standards and the measurement of serum albumin with bromocresol green. Clin Chem Acta 31:87–96

    Article  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfa hydryl groups. Arch Biochem. Biophys. 74:214–226

    Google Scholar 

  • Erdem A, Gündoğan NU, Usubütün A, Kilinç K, Erdem SR, Kara A, Bozkurt A (2000) The protective effect of taurine against gentamicin-induced acute tubular necrosis in rats. Nephrol. Dial. Transplant. 15:1175–1182

    Article  CAS  PubMed  Google Scholar 

  • Fawcett JK, Scott JE (1960) A rapid and precise method for the determination of urea. J Clin Pathol. 13:156–159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Galaly SR, Ahmed OM, Mahmoud AM (2014) Thymoquinone and curcumin prevent gentamicin-induced liver injury by attenuating oxidative stress, inflammation and apoptosis. J Physiol Pharmacol. 65:823–832

    CAS  PubMed  Google Scholar 

  • Ghaznavi R, Faghihi M, Kadkhodaee M, Shams S, Khastar H (2005) Effects of nitric oxide on gentamicin toxicity in isolated perfused rat kidneys. J. Nephrol. 18:548–552

    CAS  PubMed  Google Scholar 

  • Ghaznavi R, Kadokhodaee M (2007) Comparative effects of selective and non-selective nitric oxide synthase inhibition in gentamicin-induced rat nephrotoxicity. Arch. Toxicol. 81:453–457

    Article  CAS  PubMed  Google Scholar 

  • Henry JB (1974) Todd Sanford Davidsohn: clinical diagnosis and management by laboratory methods, 16th edn. WB Saunders and Co., Philadelphia

    Google Scholar 

  • Hosaka EM, Santos OFP, Seguro AC, Vattimo FF (2004) Effect of cyclooxygenase inhibitors on gentamicin-induced nephrotoxicity in rats. Braz. J. Med. Biol. Res. 37(7):979–985

    Article  CAS  PubMed  Google Scholar 

  • Jafarey M, Changizi Ashtiyani S, Najafi H (2014) Calcium dobesilate for prevention of gentamicin-induced nephrotoxicity in rats. Iran J Kidney Dis 8:46–52

    PubMed  Google Scholar 

  • Kandaswami C, Lee LT, Lee PP, Hwang JJ, Ke FC, Huang YT, Lee MT (2005) The antitumor activities of flavonoids. In vivo 19:895–909

    PubMed  Google Scholar 

  • Klegeris A, McGeer PL (2002) Cyclooxygenase and 5-lipoxygenase inhibitors protect against mononuclear phagocyte neurotoxicity. Neurobiol Aging 23:787–794

    Article  CAS  PubMed  Google Scholar 

  • Kovacic P, Somanathan R (2008) Unifying mechanism for eye toxicity: electron transfer, reactive oxygen species, antioxidant benefits, cell signaling and cell membranes. Cell Membr Free Radic Res 2:56–69

    Google Scholar 

  • Krahauer T, Li BQ, Young HA (2001) The flavonoid baicalin inhibits superantigen-induced inflammatory cytokines and chemokines. FEBS Lett 500:52–55

    Article  Google Scholar 

  • Kumar KV, Shifow AA, Naidu UU, Ratnakar KS (2000) Carvedilol: a beta blocker with antioxidant property protect against gentamicin-induced nephrotoxicity. Life Sci. 66:2603–2611

    Article  CAS  PubMed  Google Scholar 

  • Manikandan R, Beulaja M, Thiagarajan R, Priyadarsini A, Saravanan R, Arumugam M (2011) Ameliorative effects of curcumin against renal injuries mediated by inducible nitric oxide synthase and nuclear factor kappa B during gentamicin-induced toxicity in Wistar rats. Eur J Pharmacol. 670:578–585

    Article  CAS  PubMed  Google Scholar 

  • Mao TK, van de Water J, Keen CL, Schmitz HH and Gershwin ME (2002) Modulation of TNF-a secretion in peripheral blood mononuclear cells by cocoa flavanols and procyanidins. Dev Immunol 9:135–141

  • Mariotto S, Suzuki Y, Persichini T, Colasanti M, Suzuki H, Cantoni O (2007) Cross-talk between NO and arachidonic acid in inflammation. Curr Med Chem 14:1940–1944

    Article  CAS  PubMed  Google Scholar 

  • Marklund SL (1985) Superoxide dismutase isoenzymes in tissues and plasma from New Zealand black mice, nude mice and normal BALB/c mice. Mutat. In mice Res. 148:129–134

    Article  CAS  Google Scholar 

  • Mattew TH (1992) Drug-induced renal disease. Med. J. Aust. 156:724–728

    Google Scholar 

  • Minghetti L (2007) Role of COX-2 in inflammatory and degenerative brain diseases. Subcell Biochem 42:127–141

    Article  PubMed  Google Scholar 

  • Montero A, Uda S, Kelavkar U, Yoshimura A, Badr KF, Munger KA (2003) Increased 5-lipoxygenase activating protein in immune-mediated experimental nephritis. J. Nephrol. 16:682–690

    CAS  PubMed  Google Scholar 

  • Morales AI, Detaille D, Prieto M, Puente A, Briones E, Arévalo M, Leverve X, López-Novoa JM, El-Mir MY (2010) Metformin prevents experimental gentamicin-induced nephropathy by a mitochondria dependent pathway. Kidney Int 77:861–869

    Article  CAS  PubMed  Google Scholar 

  • Mostafa AM, Nagi MN, Al-Shabanha OA, El-Kashef HA (2003) Effect of aminoguanidine and melatonin on the response of isolated urinary bladder to acetylcholine in normal and diabetic rats. Med. Sci. Res. 28:33–37

    Google Scholar 

  • Mueller PW, Lash L, Price RG, Stolte H, Gelpi E, Maack T, Berndt WO (1997) Urinary biomarkers to detect significant effects of environmental and occupational exposure to nephrotoxins: I. Categories of tests for detecting effects of toxins. Renal. Fail. 19:505–521

    CAS  Google Scholar 

  • Nagai J, Takano M (2004) Molecular aspects of renal handling of aminoglycosides and strategies for preventing the nephrotoxicity. Drug Metabol. Pharmacoki. 19:159–170

    Article  CAS  Google Scholar 

  • Nakamura I, Takahashi C, Miyagawa I (1992) The alterations of norepinephrine and acetylcholine concentrations in immature rat urinary bladder caused by streptozotocin-induced diabetes. J. Urol. 148:423–426

    CAS  PubMed  Google Scholar 

  • Nazıroğlu M (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 32:1990–2001

    Article  PubMed  Google Scholar 

  • Nazıroğlu M (2009) Role of selenium on calcium signaling and oxidative stress-induced molecular pathways in epilepsy. Neurochem Res 34:2181–2191

    Article  PubMed  Google Scholar 

  • Nazıroğlu M, Karaoğlu A, Aksoy AO (2004) Selenium and high dose vitamin E administration protects cisplatin-induced oxidative damage to renal, liver and lens tissues in rats. Toxicology 195:221–230

    Article  PubMed  Google Scholar 

  • Okhawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95:351–358

    Article  Google Scholar 

  • Ozbek E, Turkoz Y, Sahna E, Ozugurlu F, Mizrak B, Ozbek M (2000) Melatonin administration prevents the nephrotoxicity induced by gentamicin. BJU Int. 85:742–746

    Article  CAS  PubMed  Google Scholar 

  • Ozen S, Akyol O, Iraz, M., Söğüt, S., Ozuğurlu, F., Ozyurt, H., Odaci, E. and Yildirim, Z. (2004): Role of caffeic acid phenethyl ester, an active component of propolis, against cisplatin-induced nephrotoxicity in rats. J Appl Toxicol 24: 27–35..

    Article  PubMed  Google Scholar 

  • Ozkaya D, Nazıroğlu M, Armağan, A., Demirel, A., Köroglu, B.K., Çolakoğlu, N., Kükner, A. and Sönmez, T.T. (2011): Dietary vitamin C and E modulates oxidative stress induced-kidney and lens injury in diabetic aged male rats through modulating glucose homeostasis and antioxidant systems. Cell Biochem Funct 29: 287–293..

  • Pani SR, Mishra S, Sahoo S, Panda PK (2011) Nephroprotective effect of Bauhinia variegate (linn.) whole stem extract against cisplatin-induced nephropathy in rats. Indian J Pharmacol 43:200–202

    Article  PubMed Central  PubMed  Google Scholar 

  • Parlakpinar H, Ozer MK, Sahna E, Vardi N, Cigremis Y, Acet A (2003) Amikacin induced acute renal injury in rats protective role of melatonin. J. Pineal. Res. 35:85–90

    Article  CAS  PubMed  Google Scholar 

  • Parlakpinar H, Tasdemir S, Polat A, Bay-Karabulut A, Vardi N, Ucar M, Acet A (2005) Protective role of caffeic acid phenethyl ester (CAPE) on gentamycin-induced acute renal toxicity in rats. Toxicology 207:169–177

    Article  CAS  PubMed  Google Scholar 

  • Patel RP, McAndrew J, Sellak H, White C, Jo RH, Freeman BA, Darley-Usmar VM (1999) Biological aspects of reactive nitrogen species. Biochem. Biophys. Acta 1411:385–400

    CAS  PubMed  Google Scholar 

  • Phillis JW, Horrocks LA, Farooqui AA (2006) Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res Rev. 52:201–243

    Article  CAS  PubMed  Google Scholar 

  • Polito F, Bitto A, Irrera N, Squadrito F, Fazzari C, Minutoli L, Altavilla D (2010) Flavocoxid, a dual inhibitor of cyclooxygenase-2 and 5-lipoxygenase, reduces pancreatic damage in an experimental model of acute pancreatitis. Br J Pharmacol 161:1002–1011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reichman J, Cohen S, Goldfarb M, Shina A, Rosen S, Brezis M, Karmeli F, Heyman SN (2001) Renal effects of nabumetone, a COX-2 antagonist: impairment of function in isolated perfused rat kidneys contrasts with preserved renal function in vivo. Exp Nephrol 9:387–396

    Article  CAS  PubMed  Google Scholar 

  • Schierwagen C, Bylund-Fellenius AC, Lundberg C (1990) Improved method for quantification of tissue PMN accumulation measured by myeloperoxidase activity. J Pharmacol Methods. 23:179–186

    Article  CAS  PubMed  Google Scholar 

  • Senbel AM, AbdelMoneim L, Omar AG (2014) Celecoxib modulates nitric oxide and reactive oxygen species in kidney ischemia/reperfusion injury and rat aorta model of hypoxia/reoxygenation. Vascul Pharmacol 62:24–31

    Article  CAS  PubMed  Google Scholar 

  • Shi HY, Lv FJ, Zhu ST, Wang QG, Zhang ST (2011) Dual inhibition of 5-LOX and COX-2 suppresses esophageal squamous cell carcinoma. Cancer Lett 309:19–26

    Article  CAS  PubMed  Google Scholar 

  • Shifow AA, Kumar KV, Naidu MUR, Ratnakar KS (2000) Melatonin a pineal hormone with antioxidant property protects against gentamicin-induced nephrotoxicity in rats. Nephron 85:167–174

    Article  CAS  PubMed  Google Scholar 

  • Suddek GM (2013) Montelukast ameliorates kidney function and urinary bladder sensitivity in experimentally induced renal dysfunction in rats. Fundam Clin Pharmacol 27:186–191

    Article  CAS  PubMed  Google Scholar 

  • Tardif M, Beauchamp D, Bergeron Y, Lessard C, Gourde P, Bergeron MG (1994) L-651,392, a potent leukotriene inhibitor, controls inflammatory process in Escherichia coli pyelonephritis. Antimicrob. Agents Chemother. 38:1555–1560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Teixeira RB, Kelly J, Alpert H, Pardo V, Vaamonde CA (1982) Complete protection from gentamicin-induced acute renal failure in the diabetes mellitus rat. Kidney Int. 21:600–612

    Article  CAS  PubMed  Google Scholar 

  • Wang HK (2000) The therapeutic potential of flavonoids. Expert Opin Invest Drugs 9:2103–2119

    Article  CAS  Google Scholar 

  • Yılmaz N, Ilhan S, Nazıroğlu M, Oktar S, Nacar A, Arıca V, Tutanç M (2011) Ceftriaxone ameliorates cyclosporine A-induced oxidative nephrotoxicity in rat. Cell Biochem Funct 29:102–107

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghada M. Suddek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Kashef, D.H., El-Kenawi, A.E., Suddek, G.M. et al. Flavocoxid attenuates gentamicin-induced nephrotoxicity in rats. Naunyn-Schmiedeberg's Arch Pharmacol 388, 1305–1315 (2015). https://doi.org/10.1007/s00210-015-1164-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-015-1164-8

Keywords

Navigation