Skip to main content

Advertisement

Log in

A comprehensive review of the pharmacodynamics of the SGLT2 inhibitor empagliflozin in animals and humans

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Empagliflozin (formerly known as BI 10773) is a potent, competitive, and selective inhibitor of the sodium glucose transporter SGLT2, which mediates glucose reabsorption in the early proximal tubule and most of the glucose reabsorption by the kidney, overall. Accordingly, empagliflozin treatment increased urinary glucose excretion. This has been observed across multiple species including humans and was reported under euglycemic conditions, in obesity and, most importantly, in type 2 diabetic patients and multiple animal models of type 2 diabetes and of type 1 diabetes. This led to a reduction in blood glucose, smaller blood glucose excursions during oral glucose tolerance tests, and, upon chronic treatment, a reduction in HbA1c in animal models and patients. In rodents, such effects were observed in early and late phases of experimental diabetes and were associated with preservation of pancreatic β-cell function. Combination studies in animals demonstrated that beneficial metabolic effects of empagliflozin may also manifest when added to other types of anti-hyperglycemic treatments including linagliptin and pioglitazone. While some anti-hyperglycemic drugs lead to weight gain, empagliflozin treatment was associated with reduced body weight in normoglycemic obese and non-obese animals despite an increased food intake, largely due to a loss of adipose tissue; on the other hand, empagliflozin preserved body weight in models of type 1 diabetes. Empagliflozin improved endothelial dysfunction in diabetic rats and arterial stiffness, reduced blood pressure in diabetic patients, and attenuated early signs of nephropathy in diabetic animal models. Taken together, the SGLT2 inhibitor empagliflozin improves glucose metabolism by enhancing urinary glucose excretion; upon chronic administration, at least in animal models, the reductions in blood glucose levels are associated with beneficial effects on cardiovascular and renal complications of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

OGTT:

Oral glucose tolerance test

FPG:

Fasting plasma glucose

NF-κB:

Nuclear factor κB

SGLT:

Sodium glucose transporter

STZ:

Streptozotocin

References

  • Abdul-Ghani MA, Norton L, DeFronzo RA (2011) Role of sodium-glucose cotransporter 2 (SGLT2) inhibitors in the treatment of type 2 diabetes. Endocr Rev 32(4):515–531

    Article  CAS  PubMed  Google Scholar 

  • Adler AI, Steevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR (2003) Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int 63(1):225–232

    Article  PubMed  Google Scholar 

  • Bailey CJ (2011) Renal glucose reabsorption inhibitors to treat diabetes. Trends Pharmacol Sci 32(2):63–71

    Article  CAS  PubMed  Google Scholar 

  • Bonner C, Kerr-Conte J, Gmyr V, Queniat G, Moerman E, Thevenet J, Beaucamps C, Delalleau N, Popescu I, Malaisse WJ, Sener A, Deprez B, Abderrahmani A, Staels B, Pattou F (2015) Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucago secretion. Nature Med 21: 512-517 doi:10.1038/nm.3828

  • Cangoz S, Chang Y-Y, Chempakaseril SJ, Guduru RC, Huynh LM, John JS, John ST, Joseph ME, Judge R, Kimmey R, Kudratov K, Lee PJ, Madhani IC, Shim PJ, Singh S, Ruchalski C, Raffa RB (2013) The kidney as a new target for antidiabetic drugs: SGLT2 inhibitors. J Clin Pharm Ther 38(5):350–359

    Article  CAS  PubMed  Google Scholar 

  • Cherney DZI, Perkins BA, Soleymanlou N, Har R, Fagan N, Johansen OE, Woerle H-J, von Eynatten M, Broedl UC (2014a) The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. Cardiovasc Diabetol 13:28

    Article  PubMed Central  PubMed  Google Scholar 

  • Cherney DZI, Perkins BA, Soleymanlou N, Maione M, Lai V, Lee A, Fagan NM, Woerle HJ, Johansen OE, Broedl UC, von Eynatten M (2014b) The renal hemodynamic effects of SGLT2 inhibition in patients with type 1 diabetes. Circulation 129(5):587–597 4–2

    Article  CAS  PubMed  Google Scholar 

  • Eickelmann P, Grempler R, Thomas L, Eckhardt M, Himmelsbach F, Sauer A, Mark M (2009) BI 10773, a novel and selective SGLT2 inhibitor, lower blood glucose and improves glycaemic control in diabetic rodent models. Diabetologia 52(Suppl 1):S342–S343

    Google Scholar 

  • Ferrannini, E. and Solini, A. SGLT2 inhibition in diabetes mellitus: rationale and clinical prospects. Nat Rev Endocrinol 8(8), 495–502. 2014.

  • Gembardt F, Bartaun C, Jarzebska N, Mayoux E, Todorov VT, Hohenstein B, Hugo C (2014) The SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob type 2 diabetic mice with and without hypertension. Am J Physiol 307(3):F317–F325 1–8

    CAS  Google Scholar 

  • Gorboulev V, Schürmann A, Vallon V, Kipp H, Jaschke A, Klessen D, Fridrich A, Scherneck S, Rieg T, Cunard R, Veyhl-Wichmann M, Srinivasan A, Balen D, Breljak D, Rexhepal R, Parker HE, Gribble FM, Reimann F, Lang F, Wiese S, Sabolic I, Sendtner M, Koepsell H (2012) Na+-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 61(1):187–196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grempler R, Thomas L, Klein T, Mark M, Jackson H, Cheetham S, Eickelmann P (2010) Weight loss induced by the potent and selective SGLT2 inhibitor, BI 10773, is due to body fat reduction. Studies in dietary-induced obese rats. Diabetes 59(Suppl 1):A469

    Google Scholar 

  • Grempler R, Thomas L, Sauer A, Mark M, Eickelmann P, Vickers S, Cheetham S, Klein T, Jones R (2011) The novel SGLT2 inhibitor BI 10773 prevents pioglitazone-induced weight gain and further improves glycemic control in dietary-induced obese rats. Diabetes 60(Suppl 1):A499–A500

    Google Scholar 

  • Grempler R, Augustin R, Froehner S, Hildebrandt T, Simon E, Mark M, Eickelmann P (2012a) Functional characterisation of human SGLT-5 as a novel kidney-specific sodium-dependent sugar transporter. FEBS Lett 586:248–253

    Article  CAS  PubMed  Google Scholar 

  • Grempler R, Thomas L, Eckhardt M, Himmelsbach F, Sauer A, Sharp DE, Bakker RA, Mark M, Klein T, Eickelmann P (2012b) Empafliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes Metab 14(1):83–90

    Article  CAS  PubMed  Google Scholar 

  • Hach T, Lambers Heerspink HJ, Pfarr E, Lund S, Ley L, Broedl UC, Woerle H-J (2012) The sodium glucose cotransporter-2 (SGLT-2) inhibitor empagliflozin lowers blood pressure independent of weight or HbA1c changes. Diabetologia 55(Suppl 1):S317

    Google Scholar 

  • Hach T, Gerich JE, Salsali A, Kim G, Hantel S, Woerle HJ, Broedl UC (2013) Empagliflozin improves glycemic parameters and cardiovascular risk factors in patients with type 2 diabetes (T2DM): pooled data from four pivotal phase III trials. Diabetes 62(Suppl 1A):69-LB

    Google Scholar 

  • Halimi S, Verges B (2014) Adverse effects and safety of SGLT-2 inhibitors. Diabete Metab 40(6 Suppl 1):S28–S34

    Article  CAS  PubMed  Google Scholar 

  • Han S, Hagan DL, Taylor JR, Xin L, Meng W, Biller SA, Wetterau JR, Washburn WN, Whaley JM (2008) Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats. Diabetes 57(6):1723–1729

    Article  CAS  PubMed  Google Scholar 

  • Hansen HH, Jelsing J, Hansen F, Hansen G, Vrang N, Mark M, Klein T, Mayoux E (2014) The sodium glucose cotransporter type 2 inhibitor empagliflozin preserves β-cell mass and restores glucose homeostasis in the male Zucker diabetic fatty rat. J Pharmacol Exp Ther 350(3):657–664

    Article  PubMed  Google Scholar 

  • Häring H-U, Merker L, Seewaldt-Becker E, Weimer M, Meinicke T, Woerle HJ, Broedl UC (2013) Empagliflozin as add-on to metformin plus sulfonylurea in patients with type 2 diabetes. Diabetes Care 36:3396–3404

    Article  PubMed Central  PubMed  Google Scholar 

  • Häring H-U, Merker L, Seewaldt-Becker E, Weimer M, Meinicke T, Broedl UC, Woerle HJ (2014) Empagliflozin as add-on to metformin in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care 37:1650–1659

    Article  PubMed  Google Scholar 

  • Heise T, Seewaldt-Becker E, Macha S, Hantel S, Pinnetti S, Seman L, Woerle HJ (2013a) Safety, tolerability, pharmacokinetics and pharmacodynamics following 4 weeks’ treatment with empagliflozin once daily in patients with type 2 diabetes. Diabetes Obes Metab 15(7):613–621

    Article  CAS  PubMed  Google Scholar 

  • Heise T, Seman L, Macha S, Jones P, Marquart A, Pinnetti S, Woerle HJ, Dugi K (2013b) Safety, tolerability, pharmacokinetics, and pharmacodynamics of multiple rising doses of empagliflozin in patients with type 2 diabetes mellitus. Diabetes Ther 4(2):331–345

    Article  PubMed Central  PubMed  Google Scholar 

  • Isaji M (2011) SGLT2 inhibitors: molecular design and potential differences in effect. Kidney Int 79(Suppl. 120):S14–S19

    Article  Google Scholar 

  • Jelsing J, Mayoux E, Klein T, Grempler R, Mark M (2012) Empagliflozin, a novel sodium glucose cotransporter-2 inhibitor, improves glucose homeostasis and preserves pancreatic beta cell mass in db/db mice. Diabetologia 55(Suppl 1):S317

    Google Scholar 

  • Jurczak MJ, Lee HY, Birkenfeld AL, Jornayvaz FR, Frederick DW, Pongratz RL, Zhao X, Moeckel GW, Samuel VT, Whaley JM, Shulman GI, Kibbey RG (2011) SGLT2 deletion improves glucose homeostasis and preserves pancreatic β-cell function. Diabetes 60(3):890–898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kanada S, Koiwai K, Taniguchi A, Sarashina A, Seman L, Woerle HJ (2013) Pharmacokinetics, pharmacodynamics, safety and tolerability of 4 weeks’ treatment with empagliflozin in Japanese patients with type 2 diabetes mellitus. J Diabetes Invest 4(6):613–617

  • Kern M, Klöting N, Mayoux E, Mark M, Klein T, Blüher M (2012) The sodium glucose cotransporter-2 (SGLT-2) inhibitor empagliflozin improves insulin sensitivity in db/db mice in a dose-dependent manner. Diabetes 61(Suppl 1):A262–A263

    Google Scholar 

  • Klein T, Kern M, Klöting N, Grempler R, Mayoux E, Mark M, Blüher M (2014) Combination of empagliflozin and linagliptin shows promise in a rodent model of non-alcoholic fatty liver disease. Diabetologia 57(Suppl 1):S518–S519

    Google Scholar 

  • Komala, M. G., Gross, S., Mudaliar, H., Huang, C., Pegg, K., Mather, A., Shen, S., Pollock, C. A., and Panchapakesan, U. Inhibition of kidney proximal tubular glucose reabsorption does not prevent against diabetic nephropathy in type 1 diabetic eNOS knockout mice. PLoS One. 2014. in press.

  • Kovacs CS, Seshiah V, Swallow R, Jones R, Rattunde H, Woerle HJ, Broedl UC (2014) Empagliflozin improves glycaemic and weight control as add-on therapy to pioglitazone or pioglitazone plus metformin in patients with type 2 diabetes: a 24-week, randomized, placebo-controlled trial. Diabetes Obes Metab 16(2):147–158

    Article  CAS  PubMed  Google Scholar 

  • Kurosaki E, Ogasawara H (2013) Ipragliflozin and other sodium-glucose cotransporter-2 (SGLT2) inhibitors in the treatment of type 2 diabetes: preclinical and clinical data. Pharmacol Ther 139(1):51–59

    Article  CAS  PubMed  Google Scholar 

  • Lin B, Koibuchi N, Hasegawa Y, Sueta D, Toyama K, Uekawa K, Ma MJ, Nakagawa T, Kusaka H, Kim-Mitsuyama S (2014) Glycemic control with empagliflozin, a novel selective SGLT2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice. Cardiovasc Diabetol 13:148

    Article  PubMed Central  PubMed  Google Scholar 

  • List JF, Whaley JM (2011) Glucose dynamics and mechanistic implications of SGLT2 inhibitors in animals and humans. Kidney Int 79(Suppl 120):S20–S27

    Article  Google Scholar 

  • Luippold G, Klein T, Mark M, Grempler R (2012) Empagliflozin, a novel potent and selective SGLT-2 inhibitor, improves glycaemic control alone and in combination with insulin in streptozotocin-induced diabetic rats, a model of type 1 diabetes mellitus. Diabetes Obes Metab 14(7):601–607

    Article  CAS  PubMed  Google Scholar 

  • Ly JP, Onay T, Sison K, Sivaskandarajh G, Sabbisetti V, Li L, Bonventre JV, Flenniken A, Paragas N, Barasch JM, Adamson SL, Osborne L, Rossant J, Schnermann J, Quaggin SE (2011) The Sweet Pee model for Sglt2 mutation. J Am Soc Nephrol 22(1):113–123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maeda S, Matsui T, Takeuchi M, Yamagishi S (2013) Sodium-glucose cotransporter 2-mediated oxidative stress augments advanced glycation end products-induced tubular cell apoptosis. Diabetes Metab Res Rev 29(5):406–412

    Article  CAS  PubMed  Google Scholar 

  • Magee GM, Bilous RW, Cardwell CR, Hunter SJ, Kee F, Fogarty DG (2009) Is hyperfiltration associated with the future risk of developing diabetic nephropathy? A meta-analysis. Diabetologia 52(4):691–697

    Article  CAS  PubMed  Google Scholar 

  • Mayer P (2012) Chances and risks of SGLT2 inhibitors. Naunyn Schmiedeberg's Arch Pharmacol 385(6):551–554

    Article  CAS  Google Scholar 

  • Mayoux E, Luippold G, Mark M (2013) Durable effect of empagliflozin on glucose homeostasis independent of the disease state of type 2 diabetes ZDF rats. Diabetes 62(Suppl 1):A61

    Google Scholar 

  • Meng WS, Ellsworth BA, Nirschl AA, McCann PJ, Patel M, Girotra RN, Wu G, Sher PM, Morrison EP, Biller SA, Zahler R, Deshpande PP, Pullockaran A, Hagan DL, Morgan N, Tayloer JR, Obermaier MT, Hymphreys WG, Khanna A, Discenza L, Robertson JG, Wang Y, Han S, Wetterau JR, Janovitz EB, Flint OP, Whaley JM, Washburn WN (2008) Discovery of dapagliflozin: a potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J Med Chem 51(5):1145–1149

    Article  CAS  PubMed  Google Scholar 

  • Merovici A, Solis-Herrera C, Daniele G, Eldor R, Fiorentino TV, Tripathy D, Xiong J, Perez Z, Norton L, Abdul-Ghani MA, DeFronzo RA (2014) Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. J Clin Investig 124(2):509–514 3–2

    Article  Google Scholar 

  • Murphy S, Wu W, White T, Williams JM, Mayoux E, Roman R (2014) Renoprotective effects of empagliflozin in type 1 and type 2 models of diabetic nephropathy with hypertension. Diabetes 63(Suppl 1):A217

    Google Scholar 

  • Neschen S, Scheerer M, Seelig A, Huypens P, Schultheiss J, Wu M, Wurst W, Rathkolb B, Suhre K, Wolf E, Beckers J, Hrabe de Angelis M (2015) Metformin supports the antidiabetic effect of a sodium glucose cotransporter 2 inhibitor by suppressing endogenous glucose production in diabetic mice. Diabetes 64(1):284–290

    Article  CAS  PubMed  Google Scholar 

  • Nürnberger J, Kefioglu-Schreiber A, Opazo Saez AM, Wenzel RR, Philipp T, Schäfers RF (2002) Augmentation index is associated with cardiovascular risk. J Hypertens 20(12):2407–2414

    Article  PubMed  Google Scholar 

  • Oelze M, Kröller-Schön S, Welschof P, Jansen T, Hausding M, Mikhed Y, Stamm P, Mader M, Zinßius E, Agdauletova S, Gottschlich A, Stevens S, Schulz E, Bottari S, Mayoux E, Münzel T, Daiber A (2014) The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity. PLoS One 9(11):e112394 17–11

    Article  PubMed Central  PubMed  Google Scholar 

  • Panchapakesan U, Pegg K, Gross S, Komala MG, Mudaliar H, Forbes J, Pollock C, Mather A (2013) Effects of SGLT2 inhibition in human kidney proximal tubular cells—renoprotection in diabetic nephropathy? PLoS One 8(2):e54442 3–2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pepin E, Sulpice T, Mark M, Mayoux E, Alquier T, Poitout V (2014) Long-term empagliflozin treatment preserves beta cell function in ageing ZDF rats. Diabetologia 57(Suppl 1):S324

    Google Scholar 

  • Perkins BA, Cherney DZI, Partridge H, Soleymanlou N, Tschirhart H, Zinman B, Fagan NM, Kaspers S, Woerle HJ, Broedl UC, Johansen OE (2014) Sodium-glucose cotransporter 2 inhibition and glycemic control in type 1 diabetes: results of an 8-week open-label proof-of-concept trial. Diabetes Care 37(5):1480–1483

    Article  PubMed  Google Scholar 

  • Powell DR, DaCosta CM, Gay J, Ding ZM, Smith M, Greer J, Doree D, Jeter-Jones S, Mseeh F, Rodriguez LA, Harris A, Buhring L, Platt KA, Vogel P, Brommage R, Shadoan MK, Sands AT, Zambrowicz B (2013) Improved glycemic control in mice lacking Sglt1 and Sglt2. Am J Physiol 304(2):E117–E130 15–1

    CAS  Google Scholar 

  • Purnell JQ, Weyer C (2003) Weight effect of current and experimental drugs for diabetes mellitus: from promotion to alleviation of obesity. Treat Endocrinol 2(1):33–47

    Article  CAS  PubMed  Google Scholar 

  • Rieg T, Masuda T, Gerasimova M, Mayoux E, Platt KA, Powell DR, Thomson SC, Koepsell H, Vallon V (2014) Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacologic SGLT2 inhibition in euglycemia. Am J Physiol 306(2):F188–F193

    CAS  Google Scholar 

  • Ring A, Brand T, Macha S, Breithaupt-Grögler K, Simons G, Walter B, Woerle HJ, Broedl UC (2013) The sodium glucose cotransporter 2 inhibitor empagliflozin does not prolong QT interval in a thorough QT (TQT) study. Cardiovasc Diabetol 12(1):70 24–4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roden M, Weng J, Eilbracht J, Delafont B, Kim G, Woerle HJ, Broedl UC (2013) Empagliflozin monotherapy with sitagliptin as an active comparator in patients with type 2 diabetes: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol 1:208–219 9–9

    Article  CAS  PubMed  Google Scholar 

  • Santer R, Calado J (2010) Familial renal glucosuria and SGLT2: from a Mendelian trait to a therapeutic target. Clin J Am Soc Nephrol 5(1):133–141

    Article  CAS  PubMed  Google Scholar 

  • Sarashina A, Koiwai K, Seman LJ, Yamamura N, Taniguchi A, Negishi T, Sesoko S, Woerle HJ, Dugi KA (2013) Safety, tolerability, pharmacokinetics and pharmacodynamics of single doses of empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in healthy Japanese subjects. Drug Metab Pharmacokinet 28(3):213–219

    Article  CAS  PubMed  Google Scholar 

  • Scheen AJ (2014) Pharmacokinetic and pharmacodynamic profile of empagliflozin, a sodium glucose co-transporter 2 inhibitor. Clin Pharmacokinet 53(3):213–225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scully T (2012) Diabetes in numbers. Nature 485:S2–S3 17–5

    Article  CAS  PubMed  Google Scholar 

  • Scully T (2014) Public health: society at large. Nature 508:S50–S51 17–4

    Article  PubMed  Google Scholar 

  • Seman, L., Macha, S., Nehmiz, G., Simons, G., Ren, B., Pinnetti, S., Woerle, H. J., and Dugi, K. Empagliflozin (BI 10773), a potent and selective SGLT2 inhibitor, induces dose-dependent glucosuria in healthy subjects. Clin Pharmacol Drug Dev 2(2), 152–161. 2013.

  • Skrtic M, Yang GK, Perkins BA, Soleymanlou N, Lytvyn Y, von Eynatten M, Woerle HJ, Johansen OE, Broedl UC, Hach T, Silverman M, Cherney DZI (2014) Characterization of glomerular haemodynamic responses to SGLT2 inhibition in patients with type 1 diabetes and renal hyperfiltration. Diabetologia 57(12):2599–2602

    Article  PubMed  Google Scholar 

  • Stanton RC (2014) Sodium glucose transport 2 (SGLT2) inhibition decreases glomerular hyperfiltration: is there a role for SGLT2 inhibitors in diabetic kidney disease? Circulation 129(5):542–544 4–2

    Article  PubMed  Google Scholar 

  • Tahrani AA, Barnett AH, Bailey CJ (2013) SGLT inhibitors in management of diabetes. Lancet Diabetes Endocrinol 1(2):140–151

    Article  CAS  PubMed  Google Scholar 

  • Thomas L, Klein T, Mark M (2011) Combination of the dipeptidyl peptidase-4 inhibitor linagliptin with other anti-diabetic agents in rodent models. Diabetes 60(Suppl 1):A284

    Google Scholar 

  • Thomas L, Grempler R, Eckhardt M, Himmelsbach F, Sauer A, Klein T, Eickelmann P, Mark M (2012) Long-term treatment with empagliflozin, a novel, potent and selective SGLT-2 inhibitor, improves glycaemic control and features of metabolic syndrome in diabetic rats. Diabetes Obes Metab 14(1):94–96

    Article  CAS  PubMed  Google Scholar 

  • Thomas L, Grempler R, Mark M, Mayoux E, Luippold G (2013) Glycemic control of pioglitazone in a diabetic rat model is improved when combined with empagliflozin. Diabetes 62(Suppl 1):A289

    Google Scholar 

  • Tikkanen I, Narko K, Zeller C, Green A, Salsali A, Broedl UC, Woerle H-J (2015) Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care 38(3):420–428

    Article  CAS  PubMed  Google Scholar 

  • Vallon V (2011) The proximal tubule in the pathophysiology of the diabetic kidney. Am J Physiol 300(5):R1009–R1022

    CAS  Google Scholar 

  • Vallon V, Sharma K (2010) Sodium-glucose transport: role in diabetes mellitus and potential clinical implications. Curr Opin Nephrol Hypertens 19(5):425–431

    Article  CAS  PubMed  Google Scholar 

  • Vallon V, Thomson SC (2012) Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney. Annu Rev Physiol 74(351):375

    Google Scholar 

  • Vallon V, Richter K, Blantz RC, Thomson S, Osswald H (1999) Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption. J Am Soc Nephrol 10(12):2569–2576

    CAS  PubMed  Google Scholar 

  • Vallon V, Platt KA, Cunard R, Schroth J, Whaley J, Thomson SC, Koepsell H, Rieg T (2011) SGLT2 mediates glucose reabsorption in the early proximal tubulus. J Am Soc Nephrol 22(1):104–112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vallon V, Rose M, Gerasimova M, Satriano J, Platt KA, Koepsell H, Cunard R, Sharma K, Thomson SC, Rieg T (2013) Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am J Physiol 304(2):F156–F167 15–1

    CAS  Google Scholar 

  • Vallon V, Gerasimova M, Rose M, Masuda T, Satriano J, Mayoux E, Koepsell H, Thompson SC, Rieg T (2014) SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am J Physiol 306(2):F194–F204

    CAS  Google Scholar 

  • Vickers SP, Klein T, Jones RB, Cheetham SC, Mayoux E, Grempler R, Mark M (2012) Effect of empagliflozin, on body weight, glucose control and plasma parameters in STZ induced diabetic rats fed a high-fat diet: comparison with exenatide. Diabetologia 55(Suppl 1):S137

    Google Scholar 

  • Vickers SP, Cheetham SC, Headland KR, Dickinson K, Grempler R, Mayoux E, Mark M, Klein T (2014) Combination of the SGLT2 inhibitor, empagliflozin, with orlistat or sibutramine further improves the body weight reduction and glucose homeostasis of obese rats fed a cafeteria diet. Diabetes Metab Syndr Obes Targets Ther 7:265–275 1–7

    Article  CAS  Google Scholar 

  • Wright EM, Loo DD, Hirayama BA (2011) Biology of human sodium glucose transporters. Physiol Rev 91(2):733–794

    Article  CAS  PubMed  Google Scholar 

  • Younis FM, Abassi Z, Mayoux E, Hollander KS, Rath-Wolfson L, Rosenthal T (2014a) Empagliflozin, a selective SGLT2 inhibitor, ameliorated hyperglycaemia and insulin resistance, while preserving the integrity of pancreas and kidney in CRDH rats. Diabetologia 57(Suppl 1):S323–S324

    Google Scholar 

  • Younis FM, Hollander K, Mayoux E, Landa-Rouben N, Nachman R, Leor Y, Rosenthal T (2014b) Effect of prophylactic treatment with empagliflozin on cardiac function and diabetes in CRDH rats. Diabetes 63(Suppl 1):A273

    Google Scholar 

  • Zinman, B., Inzucchi, S. E., Lachin, J. M., Wanner, C., Ferrari, R., Fitchett, D., Bluhmki, E., Hantel, S., Kempthorne-Rawson, J., Newman, J., Johansen, O. E., Woerle, H. J., and Brodl, U. C. Rationale, design, and baseline characteristics of a randomized, placebo-controlled cardiovascular outcome trial of empagliflozin (EMPA-REG OUTCOME™). Cardiovasc.Diabetol. 13, 102. 19–6. 2014.

Download references

Conflict of interest

MCM and EM are employees of Boehringer Ingelheim. VV serves as a consultant for Boehringer Ingelheim and Janssen Pharmaceutical; work in his lab has been supported by the National Institutes of Health (R01DK56248, R01HL094728, P30DK079337), by the US Department of Veterans Affairs, and by investigator-initiated research grants from Astra-Zeneca, Boehringer Ingelheim, and Bristol-Myers Squibb.

Many of the empagliflozin studies being cited included co-authors from and/or had been supported by Boehringer Ingelheim.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eric Mayoux or Volker Vallon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michel, M.C., Mayoux, E. & Vallon, V. A comprehensive review of the pharmacodynamics of the SGLT2 inhibitor empagliflozin in animals and humans. Naunyn-Schmiedeberg's Arch Pharmacol 388, 801–816 (2015). https://doi.org/10.1007/s00210-015-1134-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-015-1134-1

Keywords

Navigation