Skip to main content

Advertisement

Log in

Paradoxical effects of the autophagy inhibitor 3-methyladenine on docetaxel-induced toxicity in PC-3 and LNCaP prostate cancer cells

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Docetaxel was the first chemotherapeutic agent to increase survival time in patients with androgen-resistant prostate cancer. However, it provides only a modest increase in survival and is associated with significant toxicity. Therefore, there is an urgent need to identify potential adjunct therapies. Given the key role of autophagy in both tumour survival and chemoresistance, the impact of autophagy modulation on docetaxel toxicity was tested in vitro. PC-3 and LNCaP cells were pre-treated with the autophagy inhibitor 3-methyladenine (5 mM) and then exposed to various concentrations (0–100 μM) of docetaxel. Cytoxic effects of docetaxel were measured using resazurin reduction to resorufin, whilst autophagy and apoptosis was measured using monodansylcadaverine, annexin V and caspase-3, respectively. Docetaxel produced significant toxicity in PC-3 cells but was not toxic to LNCaP cells. Pre-treatment with the autophagy inhibitor, 3-methyladenine (5 mM) significantly protected PC-3 cells against docetaxel-induced cytotoxicity, increased autophagosome formation and apoptosis measured using monodansylcadaverine, annexin V and caspase-3 fluorescence, respectively. In contrast, 3-methyladenine was toxic by itself in LNCaP cells and also increased autophagic vesicle formation and apoptosis but did not influence docetaxel toxicity in these cells. These paradoxical effects of 3-methyladenine were largely independent of reactive oxygen species production. We show here that modulation of autophagy may influence docetaxel-induced toxicity in prostate cancer cells and these effects may differ between cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berthold DR, Pond GR et al (2008) Treatment of hormone-refractory prostate cancer with docetaxel or mitoxantrone: relationships between prostate-specific antigen, pain, and quality of life response and survival in the TAX-327 study. Clin Cancer Res 14(9):2763–2767

    Article  CAS  PubMed  Google Scholar 

  • Cao C, Subhawong T et al (2006) Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells. Cancer Res 66(20):10040–10047

    Article  CAS  PubMed  Google Scholar 

  • Choi AMK, Ryter SW et al (2013) Autophagy in human health and disease. N Engl J Med 368(7):651–662

    Article  CAS  PubMed  Google Scholar 

  • Degenhardt K, Mathew R et al (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10(1):51–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Domingo-Domenech J, Vidal SJ et al (2012) Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch-and hedgehog-dependent tumor-initiating cells. Cancer Cell 22(3):373–388

    Article  CAS  PubMed  Google Scholar 

  • Gan L, Wang J et al (2011) Resistance to docetaxel-induced apoptosis in prostate cancer cells by p38/p53/p21 signaling. Prostate 71(11):1158–1166

    Article  CAS  PubMed  Google Scholar 

  • Giampietri C, Petrungaro S et al (2012) Autophagy modulators sensitize prostate epithelial cancer cell lines to TNF-alpha-dependent apoptosis. Apoptosis 17(11):1210–1222

    Article  CAS  PubMed  Google Scholar 

  • Gozuacik D, Kimchi A (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23(16):2891–2906

    Article  CAS  PubMed  Google Scholar 

  • Heidenreich A, Bastian PJ et al (2014) EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol 65(2):467–479

    Article  CAS  PubMed  Google Scholar 

  • Herbst RS, Khuri FR (2003) Mode of action of docetaxel—a basis for combination with novel anticancer agents. Cancer Treat Rev 29(5):407–415

    Article  CAS  PubMed  Google Scholar 

  • Hou H, Zhang Y et al (2012) Inhibitors of phosphatidylinositol 3′-kinases promote mitotic cell death in HeLa cells. PLoS One 7(4):e35665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • International Agency for Research on Cancer (2012) Prostate cancer: estimated incidence, mortality and prevalence worldwide in 2012. Retrieved 29/10/14, 2014, from http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx

  • Kanzawa T, Zhang L et al (2005) Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3. Oncogene 24(6):980–991

    Article  CAS  PubMed  Google Scholar 

  • Koren I, Kimchi A (2012) Promoting tumorigenesis by suppressing autophagy. Science 338(6109):889–890

    Article  CAS  PubMed  Google Scholar 

  • Marino G, Niso-Santano M et al (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15(2):81–94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McFarland AJ, Anoopkumar-Dukie S et al (2012) Inhibition of autophagy by 3-methyladenine protects 1321N1 astrocytoma cells against pyocyanin- and 1-hydroxyphenazine-induced toxicity. Arch Toxicol 86(2):275–284

    Article  CAS  PubMed  Google Scholar 

  • McFarland AJ, Grant GD et al (2013) Paradoxical role of 3-methyladenine in pyocyanin-induced toxicity in 1321N1 astrocytoma and SH-SY5Y neuroblastoma cells. Int J Toxicol 32(3):209–218

    Article  CAS  PubMed  Google Scholar 

  • O’Neill A, Prencipe M et al (2011) Characterisation and manipulation of docetaxel resistant prostate cancer cell lines. Mol Cancer 10(1):126

    Article  PubMed Central  PubMed  Google Scholar 

  • Petrylak DP, Tangen CM et al (2004) Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 351(15):1513–1520

    Article  CAS  PubMed  Google Scholar 

  • Selvakumaran M, Amaravadi RK et al (2013) Autophagy inhibition sensitizes colon cancer cells to antiangiogenic and cytotoxic therapy. Clin Cancer Res 19(11):2995–3007

    Article  CAS  PubMed  Google Scholar 

  • Tannock IF, de Wit R et al (2004) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351(15):1502–1512

    Article  CAS  PubMed  Google Scholar 

  • Vacca A, Ribatti D et al (2002) Docetaxel versus paclitaxel for antiangiogenesis. J Hematother Stem Cell Res 11(1):103–118

    Article  CAS  PubMed  Google Scholar 

  • Wu YT, Tan HL et al (2010a) Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem 285(14):10850–10861

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu Z, Chang PC et al (2010b) Autophagy blockade sensitizes prostate cancer cells towards Src family kinase inhibitors. Genes Cancer 1(1):40–49

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Griffith Health Institute, Griffith University.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra Anoopkumar-Dukie.

Additional information

Rebecca D. Pickard, Briohny H. Spencer and Amelia J. McFarland contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pickard, R.D., Spencer, B.H., McFarland, A.J. et al. Paradoxical effects of the autophagy inhibitor 3-methyladenine on docetaxel-induced toxicity in PC-3 and LNCaP prostate cancer cells. Naunyn-Schmiedeberg's Arch Pharmacol 388, 793–799 (2015). https://doi.org/10.1007/s00210-015-1104-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-015-1104-7

Keywords

Navigation