Skip to main content

Advertisement

Log in

Effects of isoprenaline on endothelial connexins and angiogenesis in a human endothelial cell culture system

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Downregulation of endothelial connexins has been shown to result in impaired angiogenesis. Isoprenaline is known to upregulate Cx43 in cardiomyocytes. Effects of isoprenaline on endothelial connexins are unknown. We wanted to investigate whether isoprenaline might induce upregulation of connexins Cx37, Cx40, or Cx43 in human endothelial cells and whether it may promote angiogenesis. Human umbilical vein endothelial cells (HUVECs) were cultured until confluence (5 days) and subsequently seeded in Matrigel in vitro angiogenesis assays for 18 h. During the entire cell culture and angiogenesis period, cells were treated with vehicle or isoprenaline (100 nM). Finally, the resulting angiogenetic network was investigated (immuno)histologically. Moreover, expression of Cx37, Cx40, and Cx43 was determined by Western blot. In addition, we measured functional intercellular gap junction coupling by dye injection using patch clamp technique. Isoprenaline resulted in significantly enhanced expression of endothelial Cx43 and to a lower degree of Cx40 and Cx37. The number of coupling cells was significantly increased. Regarding angiogenesis, we observed significantly enhanced formation of branches and a higher complexity of the tube networks with more branches/length. Isoprenaline increases endothelial connexin expression and intercellular coupling and promotes tube formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Burnier L, Fontana P, Angelillo-Scherrer A, Kwak BR (2009) Intercellular communication in atherosclerosis. Physiology (Bethesda) 24:36–44

    Article  CAS  Google Scholar 

  • Ciccarelli M, Sorriento D, Cipolletta E, Santulli G, Fusco A, Zhou RH, Eckhart AD, Peppel K, Koch WJ, Trimarco B, Iaccarino G (2011) Impaired neoangiogenesis in β2-adrenoceptor gene-deficient mice: restoration by intravascular human β2-adrenoceptor gene transfer and role of NFκB and CREB transcription factors. Br J Pharmacol 162(3):712–721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Wit C, Roos F, Bolz SS, Kirchhoff S, Kruger O, Willecke K, Pohl U (2000) Impaired conduction of vasodilation along arterioles in connexin40-deficient mice. Circ Res 86:649–655

    Article  PubMed  Google Scholar 

  • de Wit C, Boettcher M, Schmidt VJ (2008) Signaling across myoendothelial gap junctions–fact or fiction? Cell Commun Adhes 15(3):231–245

    Article  PubMed  Google Scholar 

  • Duerrschmidt N, Hagen A, Gaertner C, Wermke A, Nowicki M, Spanel-Borowski K, Stepan H, Mohr FW, Dhein S (2012) Nicotine effects on human endothelial intercellular communication via α4β2 and α3β2 nicotinic acetylcholine receptor subtypes. Naunyn Schmiedeberg’s Arch Pharmacol 385(6):621–632

    Article  CAS  Google Scholar 

  • Ferro A, Queen LR, Priest RM, Xu B, Ritter JM, Poston L, Ward JP (1999) Activation of nitric oxide synthase by beta 2-adrenoceptors in human umbilical vein endothelium in vitro. Br J Pharmacol 126(8):1872–1880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gärtner C, Ziegelhöffer B, Kostelka M, Stepan H, Mohr FW, Dhein S (2012) Knock-down of endothelial connexins impairs angiogenesis. Pharmacol Res 65(3):347–357

    Article  PubMed  Google Scholar 

  • Haussig S, Schubert A, Mohr FW, Dhein S (2008) Sub-chronic nicotine exposure induces intercellular communication failure and differential down-regulation of connexins in cultured human endothelial cells. Atherosclerosis 196(1):210–218

    Article  CAS  PubMed  Google Scholar 

  • Hervé JC, Dhein S (2010) Peptides targeting gap junctional structures. Curr Pharm Des 16(28):3056–3070

    Article  PubMed  Google Scholar 

  • Ishii M, Mueller I, Nakajima T, Pasquale EB, Ogawa K (2011) EphB signaling inhibits gap junctional intercellular communication and synchronized contraction in cultured cardiomyocytes. Basic Res Cardiol 106(6):1057–1068

    Article  CAS  PubMed  Google Scholar 

  • Lamy S, Lachambre MP, Lord-Dufour S, Béliveau R (2010) Propranolol suppresses angiogenesis in vitro: inhibition of proliferation, migration, and differentiation of endothelial cells. Vasc Pharmacol 53(5–6):200–208

    Article  CAS  Google Scholar 

  • Langlois S, Cowan KN, Shao Q, Cowan BJ, Laird DW (2008) Caveolin-1 and -2 interact with connexin43 and regulate gap junctional intercellular communication in keratinocytes. Mol Biol Cell 19(3):912–928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laranjo S, Costa G, Paramés F, Freitas I, Martins JD, Trigo C, Pinto FF (2014) The role of propranolol in the treatment of infantile hemangioma. Rev Port Cardiol 33(5):289–295

    PubMed  Google Scholar 

  • Liao Y, Day KH, Damon DN, Duling BR (2001) Endothelial cell-specific knockout of connexin 43 causes hypotension and bradycardia in mice. Proc Natl Acad Sci U S A 98:9989–9994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Looft-Wilson RC, Billaud M, Johnstone SR, Straub AC, Isakson BE (2012) Interaction between nitric oxide signaling and gap junctions: effects on vascular function. Biochim Biophys Acta 1818(8):1895–1902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morawietz H, Rueckschloss U, Niemann B, Duerrschmidt N, Galle J, Hakim K, Zerkowski HR, Sawamura T, Holtz J (1999) Angiotensin II induces LOX-1, the human endothelial receptor for oxidized low-density lipoprotein. Circulation 100:899–902

  • Phillips RJ, Lokmic Z, Crock CM, Penington A (2014) Infantile haemangiomas that failed treatment with propranolol: clinical and histopathological features. J Paediatr Child Health 50(8):619–625

    Article  PubMed  Google Scholar 

  • Rengo G, Zincarelli C, Femminella GD, Liccardo D, Pagano G, de Lucia C, Altobelli GG, Cimini V, Ruggiero D, Perrone-Filardi P, Gao E, Ferrara N, Lymperopoulos A, Koch WJ, Leosco D (2012) Myocardial β(2) -adrenoceptor gene delivery promotes coordinated cardiac adaptive remodelling and angiogenesis in heart failure. Br J Pharmacol 166(8):2348–2361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sagi L, Zvulunov A, Lapidoth M, Ben Amitai D (2014) Efficacy and safety of propranolol for the treatment of infantile hemangioma: a presentation of ninety-nine cases. Dermatology 228(2):136–144

    Article  PubMed  Google Scholar 

  • Salameh A, Dhein S (2005) Pharmacology of gap junctions. New pharmacological targets for treatment of arrhythmia, seizure and cancer? Biochim Biophys Acta 1719(1–2):36–58

    Article  CAS  PubMed  Google Scholar 

  • Salameh A, Dhein S (2011) Adrenergic control of cardiac gap junction function and expression. Naunyn Schmiedeberg’s Arch Pharmacol 383(4):331–346

    Article  CAS  Google Scholar 

  • Salameh A, Polontchouk L, Dhein S, Hagendorff A, Pfeiffer D (2003) Chronic regulation of the expression of the gap junction protein connexin 43 in transfected HeLa cells. Naunyn Schmiedeberg’s Arch Pharmacol 368(1):33–40

    Article  CAS  Google Scholar 

  • Salameh A, Frenzel C, Boldt A, Rassler B, Glawe I, Schulte J, Mühlberg K, Zimmer HG, Pfeiffer D, Dhein S (2006) Subchronic alpha- and beta-adrenergic regulation of cardiac gap junction protein expression. FASEB J 20(2):365–367

    CAS  PubMed  Google Scholar 

  • Salameh A, Krautblatter S, Karl S, Blanke K, Gomez DR, Dhein S, Pfeiffer D, Janousek J (2009) The signal transduction cascade regulating the expression of the gap junction protein connexin43 by beta-adrenoceptors. Br J Pharmacol 158(1):198–208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sexl V, Mancusi G, Baumgartner-Parzer S, Schütz W, Freissmuth M (1995) Stimulation of human umbilical vein endothelial cell proliferation by A2-adenosine and beta 2-adrenoceptors. Br J Pharmacol 114(8):1577–1586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simon AM, McWhorter AR (2002) Vascular abnormalities in mice lacking the endothelial gap junction proteins connexin37 and connexin40. Dev Biol 251:206–220

    Article  CAS  PubMed  Google Scholar 

  • Stati T, Musumeci M, Maccari S, Massimi A, Corritore E, Strimpakos G, Pelosi E, Catalano L, Marano G (2014) β-Blockers promote angiogenesis in the mouse aortic ring assay. J Cardiovasc Pharmacol 64(1):21–27

    Article  CAS  PubMed  Google Scholar 

  • Theis M, de Wit C, Schlaeger TM, Eckardt D, Krüger O, Döring B, Risau W, Deutsch U, Pohl U, Willecke K (2001) Endothelium-specific replacement of the connexin43 coding region by a lacZ reporter gene. Genesis 29(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Gong KZ, Xu M, Zhang YY, Guo JH, Song Y, Zhang P (2009) Regulation of gap-junction protein connexin 43 by beta-adrenergic receptor stimulation in rat cardiomyocytes. Acta Pharmacol Sin 30(7):928–934

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Dhein.

Additional information

Stefan Dhein and Christiane Gaertner contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhein, S., Gaertner, C., Georgieff, C. et al. Effects of isoprenaline on endothelial connexins and angiogenesis in a human endothelial cell culture system. Naunyn-Schmiedeberg's Arch Pharmacol 388, 101–108 (2015). https://doi.org/10.1007/s00210-014-1059-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-014-1059-0

Keywords

Navigation