Skip to main content

Advertisement

Log in

Bromelain down-regulates myofibroblast differentiation in an in vitro wound healing assay

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Bromelain, a pineapple-derived enzyme mixture, is a widely used drug to improve tissue regeneration. Clinical and experimental data indicate a better outcome of soft tissue healing under the influence of bromelain. Proteolytic, anti-bacterial, anti-inflammatory, and anti-oedematogenic effects account for this improvement on the systemic level. It remains unknown, whether involved tissue cells are directly influenced by bromelain. In order to gain more insight into those mechanisms by which bromelain modulates tissue regeneration at the cellular level, we applied a well-established in vitro wound healing assay. Two main players of soft tissue healing—fibroblasts and microvascular endothelial cells—were used as mono- and co-cultures. Cell migration, proliferation, apoptosis, and the differentiation of fibroblasts to myofibroblasts as well as interleukin-6 were quantified in response to bromelain (36 × 10−3 IU/ml) under normoxia and hypoxia. Bromelain attenuated endothelial cell and fibroblast proliferation in a moderate way. This proliferation decrease was not caused by apoptosis, rather, by driving cells into the resting state G0 of the cell cycle. Endothelial cell migration was not influenced by bromelain, whereas fibroblast migration was clearly slowed down, especially under hypoxia. Bromelain led to a significant decrease of myofibroblasts under both normoxic (from 19 to 12 %) and hypoxic conditions (from 22 to 15 %), coincident with higher levels of interleukin-6. Myofibroblast differentiation, a clear sign of fibrotic development, can be attenuated by the application of bromelain in vitro. Usage of bromelain as a therapeutic drug for chronic human wounds thus remains a very promising concept for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bahde R, Palmes D, Minin E, Stratmann U, Diller R, Haier J, Spiegel H-U (2007) Bromelain ameliorates hepatic microcirculation after warm ischemia. J Surg Res 139:88–96

    Article  PubMed  CAS  Google Scholar 

  • Borthwick LA, Wynn TA, Fisher AJ (2013) Cytokine mediated tissue fibrosis. Biochim Biophys Acta 1832(7):1049–1060

    Article  PubMed  CAS  Google Scholar 

  • Breit S, Bubel M, Pohlemann T, Oberringer M (2011) Erythropoietin ameliorates the reduced migration of human fibroblasts during in vitro hypoxia. J Physiol Biochem 67:1–13

    Article  PubMed  CAS  Google Scholar 

  • Brown SA, Coimbra M, Coberly D, Chao J, Rohrich RJ (2004) Oral nutritional supplementation accelerates skin wound healing: a randomized, placebo-controlled, double-arm, crossover study. Plast Reconstr Surg 114(1):237–244

    Article  PubMed  Google Scholar 

  • Chobotovaa K, Vernallisc AB, Majidb FA (2010) Bromelain’s activity and potential as an anti-cancer agent: current evidence and perspectives. Cancer Lett 290(2):148–156

    Article  Google Scholar 

  • Desser L, Holomanova D, Zavadova E, Pavelka K, Mohr T, Herbacek I (2001) Oral therapy with proteolytic enzymes decreases excessive TGF-beta levels in human blood. Cancer Chemother Pharmacol 47(Suppl):S10–S15

    Article  PubMed  CAS  Google Scholar 

  • Diegelmann RF, Evans MC (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9:283–289

    Article  PubMed  CAS  Google Scholar 

  • Dill-Müller D, Tilgen W (2005) Bewährte und aktuelle Verfahren in der Wundheilung. Hautarzt 56:411–422

    Article  PubMed  Google Scholar 

  • Duffield JS, Lupher M, Thannickal VJ, Wynn TA (2013) Host responses in tissue repair and fibrosis. Annu Rev Pathol Mech Dis 8:241–276

    Article  CAS  Google Scholar 

  • Eneroth M, Persson BM (1993) Risk factors for failed healing in amputation for vascular disease. A prospective, consecutive study of 177 cases. Acta Orthop Scand 64:369–372

    Article  PubMed  CAS  Google Scholar 

  • Enoch S, Price PE (2004a) Should alternative endpoints be considered to evaluate outcomes in chronic recalcitrant wounds? World Wide Wounds October 2004; Available from http://www.worldwidewounds.com/2004/october/Enoch-Part2/Alternative-Enpoints-To-Healing.html. Accessed 6 May 2013

  • Enoch S, Price PE (2004b) Cellular, molecular and biochemical differences in the pathophysiology of healing between acute wounds, chronic wounds, and wounds in the aged. World Wide Wounds August 2004; Available from http://www.worldwidewounds.com//2004/august/Enoch/Pathophysiology-Of-Healing.html. Accessed 6 May 2013

  • Fenech M, Chang WP, Kirsch-Volders M, Holland N, Bonassi S, Zeiger E (2003) HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res 534:65–75

    Article  PubMed  CAS  Google Scholar 

  • Fitzhugh DJ, Shan S, Dewhirst MW, Hale LP (2008) Bromelain treatment decreases neutrophil migration to sites of inflammation. Clin Immunol 128(1):66–74

    Article  PubMed  CAS  Google Scholar 

  • Franz RW, Parks A, Shah KJ, Hankins T, Hartman JF, Wright ML (2009) Use of autologous bone marrow mononuclear cell implantation therapy as a limb salvage procedure in patients with severe peripheral arterial disease. J Vasc Surg 50:1378–1390

    Article  PubMed  Google Scholar 

  • Gallucci RM, Lee EG, Tomasek JJ (2006) IL-6 modulates alpha-smooth muscle actin expression in dermal fibroblasts from IL-6-deficient mice. J Invest Dermatol 126:561–568

    Article  PubMed  CAS  Google Scholar 

  • Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H (1984) Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 133(4):1710–1715

    PubMed  CAS  Google Scholar 

  • Gharaee-Kermani M, Phan SH (2001) Role of cytokines and cytokine therapy in wound healing and fibrotic diseases. Curr Pharm Des 7:1083–1103

    Article  PubMed  CAS  Google Scholar 

  • Gotlieb AI, Heggeness MH, Ash JF, Singer SJ (1979) Mechanochemical proteins, cell motility and cell-cell contacts: the localization of mechanochemical proteins inside cultured cells at the edge of an in vitro "wound". J Cell Physiol 100(3):563–578

    Article  PubMed  CAS  Google Scholar 

  • Hopf HW, Rollins MD (2007) Wounds: an overview of the role of oxygen. Antioxid Redox Signal 9(8):1183–1192

    Article  PubMed  CAS  Google Scholar 

  • Hu W, Wang AM, Wu SY, Zhang B, Liu S, Gou YB, Wang JM (2011) Debriding effect of bromelain on firearm wounds in pigs. J Trauma 71:966–972

    Article  PubMed  CAS  Google Scholar 

  • Hunt TK (1988) The physiology of wound healing. Ann Emerg Med 17:1265–1273

    Article  PubMed  CAS  Google Scholar 

  • Iida T, Mine S, Fujimoto H, Suzuki K, Minami Y, Tanaka Y (2002) Hypoxia-inducible factor-1 alpha induces cell cycle arrest of endothelial cells. Genes Cells 7:143–149

    Article  PubMed  CAS  Google Scholar 

  • Kannon GA, Garrett AB (1995) Moist wound healing with occlusive dressings. A clinical review. Dermatol Surg 21:583–590

    PubMed  CAS  Google Scholar 

  • Kisseleva T, Brenner DA (2008) Mechanisms of fibrogenesis. Exp Biol Med 233:109–122

    Article  CAS  Google Scholar 

  • Königs I, Jester I Erste Ergebnisse einer prospektiven Studie mit Debrase Gel Dressing zum enzymatischen Wunddebridment bei kindlichen Verbrennungen. 26. Jahrestagung der deutschsprachigen Arbeitsgemeinschaft für Verbrennungsbehandlung (DAV 2008); Available from http://www.egms.de/de/meetings/dav2008/08dav21.shtml. Accessed 11 Mar 2013

  • Krieger Y, Bogdanov-Berezovsky A, Gurfinkel R, Silberstein E, Sagi A, Rosenberg L (2012) Efficacy of enzymatic debridement of deeply burned hands. Burns 38:108–112

    Article  PubMed  Google Scholar 

  • Lebrun E, Tomic-Canic M, Kirsner RS (2010) The role of surgical debridement in healing of diabetic foot ulcers. Wound Repair Regen 18:433–438

    Article  PubMed  Google Scholar 

  • Liechty KW, Adzick NS, Crombleholme TM (2000) Diminished Interleukin 6 (IL-6) production during scarless human fetal wound repair. Cytokine 12(6):671–676

    Article  PubMed  CAS  Google Scholar 

  • Luckett-Chastain LR, Gallucci RM (2009) Interleukin (IL)-6 modulates transforming growth factor-β expression in skin and dermal fibroblasts from IL-6-deficient mice. Br J Dermatol 161:237–248

    Article  PubMed  CAS  Google Scholar 

  • MacKay D, Miller AL (2003) Nutritional support for wound healing. Altern Med Rev 8(4):359–377

    PubMed  Google Scholar 

  • Mateo RB, Reichner JS, Albina JE (1994) Interleukin-6 activity in wounds. Am J Physiol 266:R1840–R1844

    PubMed  CAS  Google Scholar 

  • Maurer HR (2001) Bromelain: biochemistry, pharmacology and medical use. Cell Mol Life Sci 58:1234–1245

    Article  PubMed  CAS  Google Scholar 

  • Moodley YP, Scaffidi AK, Misso NL, Keerthisingam C, McAnulty RJ, Laurent GJ, Mutsaers SE, Thompson PJ, Knight DA (2003) Fibroblasts isolated from normal lungs and those with idiopathic pulmonary fibrosis differ in interleukin-6/gp130-mediated cell signaling and proliferation. Am J Pathol 163(1):345–354

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly S, Ciechomska M, Cant R, Hügle T, van Laar JM (2012) Interleukin-6, its role in fibrosing conditions. Cytokine Growth Factor Rev 23:99–107

    Article  PubMed  Google Scholar 

  • Oberringer M, Meins C, Bubel M, Pohlemann T (2007) A new in vitro wound model based on the co-culture of human dermal microvascular endothelial cells and human dermal fibroblasts. Biol Cell 99(4):197–207

    Article  PubMed  CAS  Google Scholar 

  • Onken JE, Greer PK, Calingaert B, Hale LP (2008) Bromelain treatment decreases secretion of pro-inflammatory cytokines and chemokines by colon biopsies in vitro. Clin Immunol 126(3):345–352

    Article  PubMed  CAS  Google Scholar 

  • Paczek L, Gaciong Z, Bartlomiejczyk I, Sebekova K, Birkenmeier G, Heidland A (2001) Protease administration decreases enhanced transforming growth factor-beta 1 content in isolated glomeruli of diabetic rats. Drugs Exp Clin Res 27(4):141–149

    PubMed  CAS  Google Scholar 

  • Pappas PJ, Lal BK, Cerveira JJ, Padberg FT, Duran WN (2005) Causes of severe chronic venous insufficiency. Semin Vasc Surg 18(1):30–35

    Article  PubMed  Google Scholar 

  • Paquet P, Piérard GE (1996) Interleukin-6 and the skin. Int Arch Allergy Immunol 109(4):308–317

    Article  PubMed  CAS  Google Scholar 

  • Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB (1999) Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol 277:C1–C19

    PubMed  CAS  Google Scholar 

  • Purins K, Enblad P, Sandhagen B, Lewén A (2010) Brain tissue oxygen monitoring: a study of in vitro accuracy and stability of neurovent-PTO and licox sensors. Acta Neurochir 152(4):681–688

    Article  PubMed  Google Scholar 

  • Rose B, Herder C, Löffler H, Meierhoff G, Schloot NC, Walzand M, Martin S (2005) Dose-dependent induction of IL-6 by plant-derived proteases in vitro. Clin Exp Immunol 143:85–92

    Article  Google Scholar 

  • Rosenberg L, Krieger Y, Silberstein E, Arnon O, Sinelnikov IA, Bogdanov-Berezovsky A, Singer AJ (2012) Selectivity of a bromelain based enzymatic debridement agent: a porcine study. Burns 38:1035–1040

    Article  PubMed  Google Scholar 

  • Schreml S, Szeimies RM, Prantl L, Karrer S, Landthaler M, Babilas P (2010) Oxygen in acute and chronic wound healing. Br J Dermatol 163(2):257–268

    Article  PubMed  CAS  Google Scholar 

  • Schwarz F, Jennewein M, Bubel M, Holstein JH, Pohlemann T, Oberringer M (2013) Soft tissue fibroblasts from well healing and chronic human wounds show different rates of myofibroblasts in vitro. Mol Biol Rep 40:1721–1733

    Article  PubMed  CAS  Google Scholar 

  • Silverstein P (1992) Smoking and wound healing. Am J Med 93:22S–24S

    Article  PubMed  CAS  Google Scholar 

  • Singer AJ, Taira BR, Anderson R, McClain SA, Rosenberg L (2011) Reepithelialization of mid-dermal porcine burns after rapid enzymatic debridement with Debrase®. J Burn Care Res 32:647–653

    Article  PubMed  Google Scholar 

  • Smith PD (2001) Update on chronic-venous-insufficiency-induced inflammatory processes. Angiology 52:S35–S42

    Article  PubMed  Google Scholar 

  • Smith PC (2006) The causes of skin damage and leg ulceration in chronic venous disease. Int J Low Extrem Wounds 5(3):160–168

    Article  PubMed  Google Scholar 

  • Statistisches Bundesamt, 12. koordinierte Bevölkerungsvorausberechnung; Available from http://www.destatis.de/bevoelkerungspyramide. Accessed 11 Mar 2013

  • Tandara AA, Mustoe TA (2004) Oxygen in wound healing-more than a nutrient. World J Surg 28(3):294–300

    Article  PubMed  Google Scholar 

  • Todaro G, Matsuya Y, Bloom S, Robbins A, Green H (1967) In: Defendi V, Stoker M (eds) Wistar Institute Symposium 7. Wistar Institute Press, Philadelphia, pp 87–98

    Google Scholar 

  • Trabold O, Wagner S, Wicke C, Scheuenstuhl H, Hussain Z, Rosen N, Seremetiev A, Becker HD, Hunt TK (2003) Lactate and oxygen constitute a fundamental regulatory mechanism in wound healing. Wound Repair Regen 11:504–509

    Article  PubMed  Google Scholar 

  • Tucci M, Hammerman SI, Furfaro S, Saukonnen JJ, Conca TJ, Farber HW (1997) Distinct effect of hypoxia on endothelial cell proliferation and cycling. Am J Physiol 272:C1700–C1708

    PubMed  CAS  Google Scholar 

  • Vyas B, Ishikawa K, Duflo S, Chen X, Thibeault SL (2010) Inhibitory effects of HGF and IL-6 on TGF-β1 mediated vocal fibroblast-myofibroblast differentiation. Ann Otol Rhinol Laryngol 119(5):350–357

    PubMed  Google Scholar 

  • Wu SY, Hu W, Zhang B, Liu S, Wang JM, Wang AM (2012) Bromelain ameliorates the wound microenvironment and improves the healing of firearm wounds. J Surg Res 176:503–509

    Article  PubMed  CAS  Google Scholar 

  • Wynn TA (2007) Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 117:524–529

    Article  PubMed  CAS  Google Scholar 

  • Yarnold J, Brotons MC (2010) Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol 97(1):149–161

    Article  PubMed  CAS  Google Scholar 

  • Zetter BR, Chen LB, Buchanan JM (1976) Effects of protease treatment on growth, morphology, adhesion, and cell surface proteins of secondary chick embryo fibroblasts. Cell 7:407–412

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Oberringer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(JPEG 52 kb)

High resolution image

(TIFF 6246 kb)

Online Resource 2

(JPEG 82 kb)

High resolution image

(TIFF 1617 kb)

Online Resource 3

(JPEG 108 kb)

High resolution image

(TIFF 3199 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aichele, K., Bubel, M., Deubel, G. et al. Bromelain down-regulates myofibroblast differentiation in an in vitro wound healing assay. Naunyn-Schmiedeberg's Arch Pharmacol 386, 853–863 (2013). https://doi.org/10.1007/s00210-013-0890-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-013-0890-z

Keywords

Navigation