Skip to main content

Advertisement

Log in

Competition for Gβγ dimers mediates a specific cross-talk between stimulatory and inhibitory G protein α subunits of the adenylyl cyclase in cardiomyocytes

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Heterotrimeric G proteins are key regulators of signaling pathways in mammalian cells. Beyond G protein-coupled receptors, the amount and mutual ratio of specific G protein α, β, and γ subunits determine the G protein signaling. However, little is known about mechanisms that regulate the concentration and composition of G protein subunits at the plasma membrane. Here, we show a novel cross-talk between stimulatory and inhibitory G protein α subunits (Gα) that is mediated by G protein βγ dimers and controls the abundance of specific Gα subunits at the plasma membrane. Firstly, we observed in heart tissue from constitutively Gαi2- and Gαi3-deficient mice that the loss of Gαi2 and Gαi3 was accompanied by a slight increase in the protein content of the nontargeted Gαi isoform. Therefore, we analyzed whether overexpression of selected Gα subunits conversely impairs endogenous G protein α and β subunit levels in cardiomyocytes. Integration of overexpressed Gαi2 subunits into heterotrimeric G proteins was verified by co-immunoprecipitation. Adenoviral expression of increasing amounts of Gαi2 led to a reduction of Gαi3 (up to 90 %) and Gαs (up to 75 %) protein levels. Likewise, increasing amounts of adenovirally expressed Gαs resulted in a linear 75 % decrease in both Gαi2 and Gαi3 protein levels. In contrast, overexpression of either Gαi or Gαs isoform did not influence the amount of Gαo and Gαq, both of which are not involved in the regulation of adenylyl cyclase activity. The mRNA expression of the disappearing endogenous Gα subunits was not affected, indicating a posttranslational mechanism. Interestingly, the amount of endogenous G protein βγ dimers was not altered by any Gα overexpression. However, the increase of Gβγ level by adenoviral expression prevented the loss of endogenous Gαs and Gαi3 in Gαi2 overexpressing cardiomyocytes. Thus, our results provide evidence for a novel mechanism cross-regulating adenylyl cyclase-modulating Gαi isoforms and Gαs proteins. The Gα subunits apparently compete for a limited amount of Gβγ dimers, which are required for G protein heterotrimer formation at the plasma membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baculikova M, Fiala R, Jezova D, Macho L, Zorad S (2008) Rats with monosodium glutamate-induced obesity and insulin resistance exhibit low expression of Gαi2-protein. Gen Physiol Biophys 27:222–226

    PubMed  CAS  Google Scholar 

  • Blumer JB, Smrcka AV, Lanier SM (2007) Mechanistic pathways and biological roles for receptor-independent activators of G-protein signaling. Pharmacol Ther 113:488–506

    Article  PubMed  CAS  Google Scholar 

  • Böhm M, Eschenhagen T, Gierschik P, Larisch K, Lensche H, Mende U, Schmitz W, Schnabel P, Scholz H, Steinfath M, et al. (1994) Radioimmunochemical quantification of Gi alpha in right and left ventricles from patients with ischaemic and dilated cardiomyopathy and predominant left ventricular failure. J Mol Cell Cardiol 26:133–149

    Google Scholar 

  • Cohen AW, Hnasko R, Schubert W, Lisanti MP (2004) Role of caveolae and caveolins in health and disease. Physiol Rev 84:1341–1379

    Article  PubMed  CAS  Google Scholar 

  • El-Armouche A, Zolk O, Rau T, Eschenhagen T (2003) Inhibitory G-proteins and their role in desensitization of the adenylyl cyclase pathway in heart failure. Cardiovasc Res 60:478–487

    Article  PubMed  CAS  Google Scholar 

  • Evanko DS, Thiyagarajan MM, Wedegaertner PB (2000) Interaction with Gβγ is required for membrane targeting and palmitoylation of Gαs and Gαq. J Biol Chem 275:1327–1336

    Article  PubMed  CAS  Google Scholar 

  • Evanko DS, Thiyagarajan MM, Siderovski DP, Wedegaertner PB (2001) Gβγ isoforms selectively rescue plasma membrane localization and palmitoylation of mutant Galphas and Galphaq. J Biol Chem 276:23945–23953

    Article  PubMed  CAS  Google Scholar 

  • Feldman AM, Cates AE, Veazey WB, Hershberger RE, Bristow MR, Baughman KL, Baumgartner WA, Van Dop C (1988) Increase of the 40,000-mol wt pertussis toxin substrate (G protein) in the failing human heart. J Clin Invest 82:189–197

    Google Scholar 

  • Gabay M, Pinter ME, Wright FA, Chan P, Murphy AJ, Valenzuela DM, Yancopoulos GD, Tall GG (2011) Ric-8 proteins are molecular chaperones that direct nascent G protein α subunit membrane association. Sci Signal 4:ra79

    Article  PubMed  Google Scholar 

  • Gaudin C, Ishikawa Y, Wight DC, Mahdavi V, Nadal-Ginard B, Wagner TE, Vatner DE, Homcy CJ (1995) Overexpression of Gsα protein in the hearts of transgenic mice. J Clin Invest 95:1676–1683

    Article  PubMed  CAS  Google Scholar 

  • Gohla A, Klement K, Piekorz RP, Pexa K, vom Dahl S, Spicher K, Dreval V, Haussinger D, Birnbaumer L, Nurnberg B (2007) An obligatory requirement for the heterotrimeric G protein Gi3 in the antiautophagic action of insulin in the liver. Proc Natl Acad Sci U S A 104:3003–3008

    Article  PubMed  CAS  Google Scholar 

  • Hardt SE, Geng YJ, Montagne O, Asai K, Hong C, Yang GP, Bishop SP, Kim SJ, Vatner DE, Seidman CE, Seidman JG, Homcy CJ, Vatner SF (2002) Accelerated cardiomyopathy in mice with overexpression of cardiac Gsα and a missense mutation in the alpha-myosin heavy chain. Circulation 105:614–620

    Article  PubMed  CAS  Google Scholar 

  • Hippe HJ, Lutz S, Cuello F, Knorr K, Vogt A, Jakobs KH, Wieland T, Niroomand F (2003) Activation of heterotrimeric G proteins by a high energy phosphate transfer via nucleoside diphosphate kinase (NDPK) B and Gbeta subunits. Specific activation of Gsα by an NDPK B*Gβγ complex in H10 cells. J Biol Chem 278:7227–7233

    Article  PubMed  CAS  Google Scholar 

  • Hippe HJ, Luedde M, Lutz S, Koehler H, Eschenhagen T, Frey N, Katus HA, Wieland T, Niroomand F (2007) Regulation of cardiac cAMP synthesis and contractility by nucleoside diphosphate kinase B/G protein βγ dimer complexes. Circ Res 100:1191–1199

    Article  PubMed  CAS  Google Scholar 

  • Hippe HJ, Wolf NM, Abu-Taha I, Mehringer R, Just S, Lutz S, Niroomand F, Postel EH, Katus HA, Rottbauer W, Wieland T (2009) The interaction of nucleoside diphosphate kinase B with Gβγ dimers controls heterotrimeric G protein function. Proc Natl Acad Sci U S A 106:16269–16274

    Article  PubMed  CAS  Google Scholar 

  • Hippe HJ, Abu-Taha I, Wolf NM, Katus HA, Wieland T (2011a) Through scaffolding and catalytic actions nucleoside diphosphate kinase B differentially regulates basal and β-adrenoceptor-stimulated cAMP synthesis. Cell Signal 23:579–585

    Article  PubMed  CAS  Google Scholar 

  • Hippe HJ, Wolf NM, Abu-Taha HI, Lutz S, Le Lay S, Just S, Rottbauer W, Katus HA, Wieland T (2011b) Nucleoside diphosphate kinase B is required for the formation of heterotrimeric G protein containing caveolae. Naunyn Schmiedeberg’s Arch Pharmacol 384:461–472

    Article  CAS  Google Scholar 

  • Insel PA, Head BP, Ostrom RS, Patel HH, Swaney JS, Tang CM, Roth DM (2005) Caveolae and lipid rafts: G protein-coupled receptor signaling microdomains in cardiac myocytes. Ann N Y Acad Sci 1047:166–172

    Article  PubMed  CAS  Google Scholar 

  • Jain M, Lim CC, Nagata K, Davis VM, Milstone DS, Liao R, Mortensen RM (2001) Targeted inactivation of Gαi does not alter cardiac function or beta-adrenergic sensitivity. Am J Physiol Heart Circ Physiol 280:H569–H575

    PubMed  CAS  Google Scholar 

  • Johansson BB, Minsaas L, Aragay AM (2005) Proteasome involvement in the degradation of the Gq family of Gα subunits. FEBS J 272:5365–5377

    Article  PubMed  CAS  Google Scholar 

  • Kaur K, Parra S, Chen R, Charbeneau RA, Wade SM, Jay PY, Neubig RR (2012) Gαi2 signaling: friend or foe in cardiac injury and heart failure? Naunyn Schmiedeberg’s Arch Pharmacol 385:443–453

    Article  CAS  Google Scholar 

  • Krumins AM, Gilman AG (2006) Targeted knockdown of G protein subunits selectively prevents receptor-mediated modulation of effectors and reveals complex changes in nontargeted signaling proteins. J Biol Chem 281:10250–10262

    Article  PubMed  CAS  Google Scholar 

  • Lee YI, Kim SY, Cho CH, Seo M, Cho DH, Kwak SJ, Juhnn YS (2003) Coordinate expression of the α and β subunits of heterotrimeric G proteins involves regulation of protein degradation in CHO cells. FEBS Lett 555:329–334

    Article  PubMed  CAS  Google Scholar 

  • Levis MJ, Bourne HR (1992) Activation of the α subunit of Gs in intact cells alters its abundance, rate of degradation, and membrane avidity. J Cell Biol 119:1297–1307

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Mende U, Lewis C, Neer EJ (1996) Maintenance of cellular levels of G-proteins: different efficiencies of αs and αo synthesis in GH3 cells. Biochem J 318:1071–1077

    PubMed  CAS  Google Scholar 

  • Lohse MJ, Engelhardt S, Eschenhagen T (2003) What is the role of β-adrenergic signaling in heart failure? Circ Res 93:896–906

    Article  PubMed  CAS  Google Scholar 

  • Lutz S, Hippe HJ, Niroomand F, Wieland T (2004) Nucleoside diphosphate kinase-mediated activation of heterotrimeric G proteins. Methods Enzymol 390:403–418

    Article  PubMed  CAS  Google Scholar 

  • Melien O (2007) Heterotrimeric G proteins and disease. Methods Mol Biol 361:119–144

    PubMed  CAS  Google Scholar 

  • Mittmann C, Pinkepank G, Stamatelopoulou S, Wieland T, Nurnberg B, Hirt S, Eschenhagen T (2003) Differential coupling of m-cholinoceptors to Gi/Go-proteins in failing human myocardium. J Mol Cell Cardiol 35:1241–1249

    Article  PubMed  CAS  Google Scholar 

  • Mühlhäuser U, Zolk O, Rau T, Munzel F, Wieland T, Eschenhagen T (2006) Atorvastatin desensitizes beta-adrenergic signaling in cardiac myocytes via reduced isoprenylation of G-protein γ subunits. FASEB J 20:785–787

    PubMed  Google Scholar 

  • Nishizawa T, Vatner SF, Hong C, Shen YT, Hardt SE, Robbins J, Ishikawa Y, Sadoshima J, Vatner DE (2006) Overexpressed cardiac Gsalpha in rabbits. J Mol Cell Cardiol 41:44–50

    Article  PubMed  CAS  Google Scholar 

  • Ostrom RS, Insel PA (2004) The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology. Br J Pharmacol 143:235–245

    Article  PubMed  CAS  Google Scholar 

  • Palmer TM, Taberner PV, Houslay MD (1992) Alterations in G-protein expression, Gi function, and stimulatory receptor-mediated regulation of adipocyte adenylyl cyclase in a model of insulin-resistant diabetes with obesity. Cell Signal 4:365–377

    Article  PubMed  CAS  Google Scholar 

  • Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8:185–194

    Google Scholar 

  • Patel HH, Murray F, Insel PA (2008) Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annu Rev Pharmacol Toxicol 48:359–391

    Article  PubMed  CAS  Google Scholar 

  • Peng YW, Robishaw JD, Levine MA, Yau KW (1992) Retinal rods and cones have distinct G protein β and γ subunits. Proc Natl Acad Sci U S A 89:10882–10886

    Article  PubMed  CAS  Google Scholar 

  • Rau T, Nose M, Remmers U, Weil J, Weissmuller A, Davia K, Harding S, Peppel K, Koch WJ, Eschenhagen T (2003) Overexpression of wild-type Gαi2 suppresses β-adrenergic signaling in cardiac myocytes. FASEB J 17:523–525

    PubMed  CAS  Google Scholar 

  • Rudolph U, Finegold MJ, Rich SS, Harriman GR, Srinivasan Y, Brabet P, Boulay G, Bradley A, Birnbaumer L (1995) Ulcerative colitis and adenocarcinoma of the colon in Gαi2-deficient mice. Nat Genet 10:143–150

    Article  PubMed  CAS  Google Scholar 

  • Rudolph U, Spicher K, Birnbaumer L (1996) Adenylyl cyclase inhibition and altered G protein subunit expression and ADP-ribosylation patterns in tissues and cells from Gαi2 -/-mice. Proc Natl Acad Sci U S A 93:3209–3214

    Article  PubMed  CAS  Google Scholar 

  • Schägger H, Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379

    Google Scholar 

  • Wang Y, Dohlman HG (2006) Regulation of G protein and mitogen-activated protein kinase signaling by ubiquitination: insights from model organisms. Circ Res 99:1305–1314

    Article  PubMed  CAS  Google Scholar 

  • Wettschureck N, Offermanns S (2005) Mammalian G proteins and their cell type specific functions. Physiol Rev 85:1159–1204

    Google Scholar 

  • Wiege K, Le DD, Syed SN, Ali SR, Novakovic A, Beer-Hammer S, Piekorz RP, Schmidt RE, Nürnberg B, Gessner JE (2012) Defective macrophage migration in Gαi2- but not Gαi3-deficient mice. J Immunol 189:980–987

    Article  PubMed  CAS  Google Scholar 

  • Wiege K, Ali SR, Gewecke B, Novakovic A, Konrad FM, Pexa K, Beer-Hammer S, Reutershan J, Piekorz RP, Schmidt RE, Nürnberg B, Gessner JE (2013) Gαi2 is the essential Gαi protein in immune complex-induced lung disease. J Immunol 190:324–333

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Jörg Hippe.

Additional information

Hans-Jörg Hippe and Mark Lüdde contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hippe, HJ., Lüdde, M., Schnoes, K. et al. Competition for Gβγ dimers mediates a specific cross-talk between stimulatory and inhibitory G protein α subunits of the adenylyl cyclase in cardiomyocytes. Naunyn-Schmiedeberg's Arch Pharmacol 386, 459–469 (2013). https://doi.org/10.1007/s00210-013-0876-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-013-0876-x

Keywords

Navigation