Skip to main content

Advertisement

Log in

The in vitro pharmacological profile of TD-1211, a neutral opioid receptor antagonist

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The clinical efficacy of opioid receptor antagonists for the treatment of opioid-induced constipation (OIC) is established. Peripherally selective antagonists are intended to provide OIC symptom relief without compromising the analgesic effects of centrally penetrant opioid agonists. We describe the in vitro profile of a novel opioid receptor antagonist, TD-1211, at recombinant (human μ and δ, and guinea pig κ) and rodent native opioid receptors. TD-1211 bound with high affinity to human recombinant μ and δ, and guinea pig κ receptors expressed in CHO-K1 cells (pK d = 9.7, 8.6, and 9.9, respectively). The in vitro receptor selectivity of TD-1211 (μ ≈ κ > δ) is similar to that for the peripherally-selective opioid receptor antagonist methylnaltrexone, but contrasts with the μ selectivity of alvimopan. Functionally, TD-1211 behaved as an antagonist at all three receptor types in both recombinant expression systems (pK b = 9.6, 8.8 and 9.5, at μ, δ, and κ, respectively) and rodent native tissue preparations (μ and κ pA2s = 10.1 and 8.8, respectively (guinea pig ileum), and δ pK b = 8.4 (hamster vas deferens)). TD-1211 displayed a high degree of selectivity for opioid receptors over a broad panel of cellular targets. These in vitro data justified investigation of the preclinical in vivo activity of TD-1211 (Armstrong et al., Naunyn-Schmiedeberg’s Arch Pharm, 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

OIC:

Opioid-induced constipation

GI:

Gastrointestinal

CNS:

Central nervous system

HEPES:

4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid

DMSO:

Dimethyl sulfoxide

DAMGO:

[d-Ala2, N-MePhe4, Gly-ol]enkephalin

DPDPE:

[d-Pen2,5]enkephalin

U69593:

N-Methyl-2-phenyl-N-[(5R,7S,8S)-7-(pyrrolidin-1-yl)-1-oxaspiro[4.5]dec-8-yl] acetamide

EFS:

Electrical field stimulation

BSA:

Bovine serum albumin

CHO:

Chinese hamster ovary

IA:

Intrinsic activity

References

  • Armstrong SR, Campbell CB, Richardson CL, Vickery RG, Tsuruda PR, Long DD, Hegde SS, Beattie DT (2013) The in vivo pharmacology of TD-1211, a peripherally-selective opioid receptor antagonist in development for the treatment of opioid-induced constipation. Naunyn-Schmiedeberg’s Arch Pharm. doi:10.1007/s00210-013-0844-5

  • Arunlakshana O, Schild HO (1959) Some quantitative uses of drug antagonists. Br J Pharmacol Chemotherap 14:48–58

    Article  CAS  Google Scholar 

  • Beattie DT, Cheruvu M, Mai N, O’Keefe M, Johnson-Rabidoux S, Peterson C, Kaufman E, Vickery R (2007) The in vitro pharmacology of the peripherally restricted opioid receptor antagonists, alvimopan, ADL 08–0011 and methylnaltrexone. Naunyn Schmiedeberg’s Arch Pharmacol 375:205–220

    Article  CAS  Google Scholar 

  • Brent PJ, Chahl LA, Cantarella PA, Kavanagh C (1993) The kappa-opioid receptor agonist U50,488H induces acute physical dependence in guinea-pigs. Eur J Pharmacol 241:149–156

    Article  PubMed  CAS  Google Scholar 

  • Brock C, Olesen SS, Olesen AE, Frokjaer JB, Andresen T, Drewes AM (2012) Opioid-induced bowel dysfunction. Drugs 72:1847–1865

    Article  PubMed  CAS  Google Scholar 

  • Calderon SN, Rothman RB, Porreca F, Flippen-Anderson JL, McNutt RW, Xu H, Smith LE, Bilsky EJ, Davis P, Rice KC (1994) Probes for narcotic receptor mediated phenomena. 19. Synthesis of (+)-4-[(alpha R)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC 80): a highly selective, nonpeptide delta opioid receptor agonist. J Med Chem 37:2125–3128

    Google Scholar 

  • Cassel JA, Daubert JD, DeHaven RN (2005) [(3)H]Alvimopan binding to the micro opioid receptor: comparative binding kinetics of opioid antagonists. Eur J Pharmacol 520:29–36

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I 50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  PubMed  CAS  Google Scholar 

  • Chou R, Fanciullo GJ, Fine PG, Adler JA, Ballantyne JC, Davies P, Donovan MI, Fishbain DA, Foley KM, Fudin J, Gilson AM, Kelter A, Mauskop A, O’Connor PG, Passik SD, Pasternak GW, Portenoy RK, Rich BA, Roberts RG, Todd KH, Miaskowski C (2009) Clinical guidelines for the use of chronic opioid therapy in chronic noncancer pain. J Pain 10:113–130

    Article  PubMed  CAS  Google Scholar 

  • Collier HOJ, Cuthbert NJ, Francis DL (1981) Model of opiate dependence in the guinea-pig isolated ileum. Br J Pharmacol 73:921–932

    Article  PubMed  CAS  Google Scholar 

  • Culpepper-Morgan JA, Holt PR, LaRoche D, Kreek MJ (1995) Orally administered opioid antagonists reverse both mu and kappa opioid agonist delay of gastrointestinal transit in the guinea pig. Life Sci 56:1187–1192

    Article  PubMed  CAS  Google Scholar 

  • Culpepper-Morgan JA, Inurrisi CE, Portenoy RK, Foley K, Houde RW, Marsh F, Kreek MJ (1992) Treatment of opioid-induced constipation with oral naloxone: a pilot study. Clin Pharmacol Therap 52:90–95

    Google Scholar 

  • Deibert P, Xander C, Blum HE, Becker G (2010) Methylnaltrexone: the evidence for its use in the management of opioid-induced constipation. Core Evid 4:247–258

    PubMed  Google Scholar 

  • De Luca A, Coupar IM (1996) Insights into opioid action in the intestinal tract. Pharmacol Ther 69:103–115

    Article  PubMed  Google Scholar 

  • Johnson SM, Williams JT, Costa M, Furness JB (1987) Naloxone-induced depolarization and synaptic activation of myenteric neurons in morphine-dependent guinea pig ileum. Neurosci 21:595–602

    Article  CAS  Google Scholar 

  • Kapitzke D, Vetter I, Cabot PJ (2005) Endogenous opioid analgesia in peripheral tissues and the clinical implications for pain control. Ther Clin Risk Manag 1(4):279–297

    PubMed  CAS  Google Scholar 

  • Kojima Y, Takahashi T, Fujina M, Owyang C (1994) Inhibition of cholinergic transmission by opiates in ileal myenteric plexus is mediated by kappa receptor. Involvement of regulatory inhibitory G protein and calcium N-channels. J Pharmacol Exp Therap 268:965–970

    CAS  Google Scholar 

  • Kosterlitz HW, Watt AJ (1968) Kinetic parameters of narcotic agonists and antagonists, with particular reference to N-allylnoroxymorphone (naloxone). Br J Pharmacol 33:266–277

    CAS  Google Scholar 

  • Kraft M, Maclaren R, Du W, Owens G (2010) Alvimopan (entereg) for the management of postoperative ileus in patients undergoing bowel resection. Pharm Therap 35:44–49

    Google Scholar 

  • Kromer W, Steigemann N, Shearman GT (1982) Differential effects of SKF 10,047 (N-allyl-normetazocine) on peristalsis and longitudinal muscle contractions of the isolated guinea-pig ileum. Naunyn-Schmiedeberg’s Arch Pharmacol 321:218–222

    Article  CAS  Google Scholar 

  • Kurz A, Sessler DI (2003) Opioid-induced bowel dysfunction: pathophysiology and potential new therapies. Drugs 63:649–671

    Article  PubMed  CAS  Google Scholar 

  • Lagrutta AA, Trepakova ES, Salata JJ (2008) The hERG channel and risk of dug-acquired cardiac arrhythmia: an overview. Curr Topics Med Chem 8:1102–1112

    Article  CAS  Google Scholar 

  • Lazorthes YR, Sallerin BA-M, Verdie J-CP (1995) Intracerebroventricular administration of morphine for control of irreducible cancer pain. Neurosurg 37:422–428

    Article  CAS  Google Scholar 

  • Lucero M, Von Scheele B, Blackard R, Milanova T, Bell T (2006) Amer Pain Soc Meeting, poster #959.

  • Lujan M, Rodriguez R (1981) Pharmacological characterization of opiate physical dependence in the isolated ileum of the guinea-pig. Br J Pharmacol 73:859–866

    Article  PubMed  CAS  Google Scholar 

  • Mako E, Ronai AZ, Adam G, Juhasz G, Ritter L, Lestar B, Crunelli V (2000) Modulation by GABA(B) and delta opioid receptors of neurally induced responses in isolated guinea-pig taenia coli and human colonic circular muscle. J Physiol Paris 94:135–138

    Article  PubMed  CAS  Google Scholar 

  • McKnight AT, Corbett AD, Marcoli M, Kosterlitz HW (1985) The opioid receptors in the hamster vas deferens are of the delta-type. Neuropharmacol 24:1011–1017

    Article  CAS  Google Scholar 

  • Meissner W, Schmidt U, Hartmann M, Kath R, Reinhart K (2000) Oral naloxone reverses opioid-associated constipation. Pain 84:105–109

    Article  PubMed  CAS  Google Scholar 

  • Mercadante S (1999) Problems of long-term spinal opioid treatment in advanced cancer patients. Pain 79:1–13

    Article  PubMed  CAS  Google Scholar 

  • Nakayama S, Taniyama K, Matsuyama S, Ohgushi N, Tsunekawa K, Tanaka C (1990) Regulatory role of enteric mu and kappa opioid receptors in the release of acetylcholine and norepinephrine from guinea pig ileum. J Pharmacol Exp Therap 254:792–798

    CAS  Google Scholar 

  • Nishiwaki H, Saitoh N, Nishio H, Takeuchi T, Hata F (1998a) Inhibitory effect of endomorphin-1 and −2 on acetylcholine release from myenteric plexus of guinea pig ileum. Jap J Pharmacol 78:83–86

    Article  PubMed  CAS  Google Scholar 

  • Nishiwaki H, Saitoh N, Nishio H, Takeuchi T, Hata F (1998b) Relationship between inhibitory effect of endogenous opioid via mu-receptors and muscarinic autoinhibition in acetylcholine release from myenteric plexus of guinea pig ileum. Jap J Pharmacol 77:279–286

    Article  PubMed  CAS  Google Scholar 

  • Pappagallo M (2001) Incidence, prevalence, and management of opioid bowel dysfunction. Am J Surgery 182:11S–18S

    Article  CAS  Google Scholar 

  • Pol O, Ferrer I, Puig MM (1994) Diarrhea associated with intestinal inflammation increases the potency of mu and delta opioids on the inhibition of gastrointestinal transit in mice. J Pharmacol Exp Ther 270(1):386–391

    PubMed  CAS  Google Scholar 

  • Porreca F, Galligan JJ, Burks TF (1986) Central opioid receptor involvement in gastrointestinal motility. Trends Pharmacol Sci 7:104–107

    Article  CAS  Google Scholar 

  • Sadée W, Wang D, Bilsky EJ (2005) Basal opioid receptor activity, neutral antagonists, and therapeutic opportunities. Life Sci 76:1427–1437

    Article  PubMed  Google Scholar 

  • Seiwald M, Alesch F, Kofler A (1996) Intraventricular morphine administration as a treatment possibility for patients with intractable pain. Wien Klin Wochenschr 108:5–8

    PubMed  CAS  Google Scholar 

  • Smith JA, Amagasu SM, Hembrador J, Axt S, Chang R, Church T, Gee C, Jacobsen JR, Jenkins T, Kaufman E, Mai N, Vickery RG (2006) Evidence for a multivalent interaction of symmetrical, N-linked, lidocaine dimmers with voltage-gated Na+ channels. Mol Pharmacol 69:921–931

    PubMed  CAS  Google Scholar 

  • Smith JAM, Beattie DT, Marquess D, Shaw J-P, Vickery RG, Humphrey PPA (2008) The in vitro pharmacological profile of TD-5108, a selective 5-HT4 receptor agonist with high intrinsic activity. Naunyn Schmiedebergs Arch Pharmacol 378:125–137

    Article  PubMed  CAS  Google Scholar 

  • Sternini C, Patierno S, Selmer IS, Kirchgessner A (2004) The opioid system in the gastrointestinal tract. Neurogastroenterol Motil 16(suppl 2):3–16

    Article  PubMed  Google Scholar 

  • Valeri P, Morrone LA, Romanelli L, Amico MC (1995) Acute withdrawal after bremazocine and the interaction between mu- and kappa-opioid receptors in isolated gut tissues. Br J Pharmacol 114:1206–1210

    Article  PubMed  CAS  Google Scholar 

  • Vanegas G, Ripamonti C, Sbanotto A, De Conno F (1998) Side effects of morphine administration in cancer patients. Cancer Nursing 21:289–297

    Article  PubMed  CAS  Google Scholar 

  • Vickery R, Li Y-P, Schwertschlag U, Singla N, Webster L, Canafax D (2012) TD-1211 demonstrates improvement in bowel movement frequency without impacting analgesia in a Phase 2b study of patients with opioid-induced constipation. Pain Week, Las Vegas, NV, September 5–8. Poster #121. http://www.painweek.org/scientificposters/2012-accepted-abstracts

  • Viscusi ER, Gan TJ, Leslie JB, Foss JF, Talon MD, Du W, Owens G (2009) Peripherally acting mu-opioid receptor antagonists and postoperative ileus: mechanisms of action and clinical applicability. Anaesth Analg 108:1811–1822

    Article  CAS  Google Scholar 

  • Wade PR, Palmer JM, McKenney S, Kenigs V, Chevalier K, Moore BA, Mabus JR, Saunders PR, Wallace NH, Schneider CR, Kimball ES, Breslin HJ, He W, Hornby PJ (2012) Modulation of gastrointestinal function by MuDelta, a mixed μ opioid receptor agonist/μ opioid receptor antagonist. Br J Pharmacol 167(5):1111–1125

    Article  PubMed  CAS  Google Scholar 

  • Walsh TD (1990) Prevention of opioid side effects. J Pain Symptom Manag 5:362–367

    Article  CAS  Google Scholar 

  • Walsh TD (2000) Pharmacological management of cancer pain. Seminars in Oncology 27:45–63

    PubMed  Google Scholar 

  • Walters JB, Montagnini M (2010) Current concepts in the management of opioid-induced constipation. J Opioid Management 66:435–444

    Article  Google Scholar 

  • Wang D, Bilsky EJ, Porreca F, Sadée W (1994) Constitutive mu opioid receptor activation as a regulatory mechanism underlying narcotic tolerance and dependence. Life Sci 54:339–350

    Google Scholar 

  • Wang D, Raehal KM, Bilsky EJ, Sadée W (2001) Inverse agonists and neutral antagonists at mu opioid receptor (MOR): possible role of basal receptor signaling in narcotic dependence. J Neurochem 77:1590–1600

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Sun X, Sadée W (2007) Different effects of opioid antagonists on mu-, delta-, and kappa-opioid receptors with and without agonist pretreatment. J Pharmacol Exp Therap 321:544–552

    Article  CAS  Google Scholar 

  • Wood JD, Galligan JJ (2004) Function of opioids in the enteric nervous system. Neurogastroenterol Motil 16(suppl 2):17–28

    Article  PubMed  Google Scholar 

  • Yassen A, Olofsen E, Dahan A, Danhof M (2005) Pharmacokinetic–pharmacodynamic modeling of the antinociceptive effect of buprenorphine and fentanyl in rats: role of receptor equilibration kinetics. J Pharmacol Exp Ther 313:1136–1149

    Article  PubMed  CAS  Google Scholar 

  • Zagorodnyuk V, Maggi CA (1994) Electrophysiological evidence for different release mechanism of ATP and NO as inhibitory NANC transmitters in guinea-pig colon. Br J Pharmacol 112:1077–1082

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Shanti Amagasu, Madhavi Ravindran, Courtney Gee, Ngoc Mai, Joey Yung, and Shana Johnson Rabidoux for technical support, and Uwe Klein for a thoughtful review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela R. Tsuruda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Representative saturation binding of [3H]TD-1211 at human recombinant μ (a), human recombinant δ (b), or guinea pig recombinant κ receptors (c) (DOCX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuruda, P.R., Vickery, R.G., Long, D.D. et al. The in vitro pharmacological profile of TD-1211, a neutral opioid receptor antagonist. Naunyn-Schmiedeberg's Arch Pharmacol 386, 479–491 (2013). https://doi.org/10.1007/s00210-013-0850-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-013-0850-7

Keywords

Navigation