Skip to main content

Advertisement

Log in

Cannabinoid-mediated diversity of antinociceptive efficacy of parecoxib in Wistar and Sprague Dawley rats in the chronic constriction injury model of neuropathic pain

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

We studied nociceptive behavior and the effects of analgesics in Wistar (Wist) and Sprague Dawley (SPD) rats and in CB1 receptor-deficient mice with neuropathic pain experimentally. Neuropathic pain was induced by loose ligation of the sciatic nerve (chronic constriction injury, CCI). In CCI rats from both strains, cold allodynia and a reduced thermal pain threshold were detected, whereas no effect was found in the hot plate test. Thermal pain threshold was used to study the antinociceptive effects of morphine, gabapentin, and parecoxib 5 days after surgery. Doses of gabapentin and morphine which had no effect on sham-operated animals provoked antinociceptive activity in CCI rats from both strains. An antinociceptive effect of parecoxib was only found in CCI Wist rats. No pharmacokinetic differences were detected between the two strains in parecoxib metabolism. Antinociceptive activity caused by parecoxib was attenuated by the CB1 antagonist rimonabant. To further clarify parecoxib—CB1 interaction, the effect of parecoxib was investigated in CB1-deficient mice and wild-type animals. CCI did not affect thermal pain threshold and mechanical pain threshold was decreased. Parecoxib normalized the altered mechanical pain threshold in CCI wild-type animals, whereas it had only a marginal effect in CB1 receptor deficient mice. Receptor binding experiments showed increased CB1 binding in parecoxib-treated CCI Wist rats. Levels of the CB1 receptor mRNA remained constant in both strains of rats 5 days after surgery. Differences in antinociceptive activity might be due to modification of the cannabinoid system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson BJ (2008) Paracetamol (acetaminophen): mechanisms of action. Paediatr Anaesth 18:915–921

    Article  PubMed  Google Scholar 

  • Asato F, Butler M, Blomberg H, Gordh T (2000) Variation in rat sciatic nerve anatomy: implications for a rat model of neuropathic pain. J Peripher Nerv Syst 5:19–21

    Article  PubMed  CAS  Google Scholar 

  • Ballesta JJ, Cremades J, Rodriguez-Munoz M, Garzon J, Faura CC (2012) Sensitivity to mu opioid receptor mediated antinociception is determined by cross-regulation between mu and delta opioid receptors at supraspinal level. Br J Pharmacol 166:309–326

    Article  PubMed  CAS  Google Scholar 

  • Bär KJ, Brehm S, Boettger MK, Boettger S, Wagner G, Sauer H (2005) Pain perception in major depression depends on pain modality. Pain 117:97–103

    Article  PubMed  Google Scholar 

  • Bär KJ, Brehm S, Boettger MK, Wagner G, Boettger S, Sauer H (2006) Decreased sensitivity to experimental pain in adjustment disorder. Eur J Pain 10:467–471

    Article  PubMed  Google Scholar 

  • Becker A, Grecksch G, Bernstein HG, Höllt V, Bogerts B (1999) Social behaviour in rats lesioned with ibotenic acid in the hippocampus: quantitative and qualitative analysis. Psychopharmacology (Berlin) 144:333–338

    Article  CAS  Google Scholar 

  • Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107

    Article  PubMed  CAS  Google Scholar 

  • Beyer CE, Dwyer JM, Piesla MJ, Platt BJ, Shen R, Rahman Z, Chan K, Manners MT, Samad TA, Kennedy JD, Bingham B, Whiteside GT (2010) Depression-like phenotype following chronic CB1 receptor antagonism. Neurobiol Dis 39:148–155

    Article  PubMed  CAS  Google Scholar 

  • Bishay P, Schmidt H, Marian C, Haussler A, Wijnvoord N, Ziebell S, Metzner J, Koch M, Myrczek T, Bechmann I, Kuner R, Costigan M, Dehghani F, Geisslinger G, Tegeder I (2010) R-flurbiprofen reduces neuropathic pain in rodents by restoring endogenous cannabinoids. PLoS One 5:e10628

    Article  PubMed  Google Scholar 

  • Braida D, Iosue S, Pegorini S, Sala M (2004) Delta9-tetrahydrocannabinol-induced conditioned place preference and intracerebroventricular self-administration in rats. Eur J Pharmacol 506:63–69

    Article  PubMed  CAS  Google Scholar 

  • Calignano A, La RG, Giuffrida A, Piomelli D (1998) Control of pain initiation by endogenous cannabinoids. Nature 394:277–281

    Article  PubMed  CAS  Google Scholar 

  • Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63

    Article  PubMed  CAS  Google Scholar 

  • Chapman V (1999) The cannabinoid CB1 receptor antagonist, SR141716A, selectively facilitates nociceptive responses of dorsal horn neurones in the rat. Br J Pharmacol 127:1765–1767

    Article  PubMed  CAS  Google Scholar 

  • Dani M, Guindon J, Lambert C, Beaulieu P (2007) The local antinociceptive effects of paracetamol in neuropathic pain are mediated by cannabinoid receptors. Eur J Pharmacol 573:214–215

    Article  PubMed  CAS  Google Scholar 

  • Dauri M, Faria S, Gatti A, Celidonio L, Carpenedo R, Sabato AF (2009) Gabapentin and pregabalin for the acute post-operative pain management. a systematic-narrative review of the recent clinical evidences. Curr Drug Targets 10:716–733

    Article  PubMed  CAS  Google Scholar 

  • De la O-Arciniega M, Diaz-Reval MI, Cortes-Arroyo AR, Dominguez-Ramirez AM, Lopez-Munoz FJ (2009) Anti-nociceptive synergism of morphine and gabapentin in neuropathic pain induced by chronic constriction injury. Pharmacol Biochem Behav 92:457–464

    Article  PubMed  Google Scholar 

  • Deiana S, Fattore L, Spano MS, Cossu G, Porcu E, Fadda P, Fratta W (2007) Strain and schedule-dependent differences in the acquisition, maintenance and extinction of intravenous cannabinoid self-administration in rats. Neuropharmacology 52:646–654

    Article  PubMed  CAS  Google Scholar 

  • Eggan SM, Stoyak SR, Verrico CD, Lewis DA (2010) Cannabinoid CB1 receptor immunoreactivity in the prefrontal cortex: comparison of schizophrenia and major depressive disorder. Neuropsychopharmacology 35:2060–2071

    Article  PubMed  CAS  Google Scholar 

  • Elmer GI, Pieper JO, Negus SS, Woods JH (1998) Genetic variance in nociception and its relationship to the potency of morphine-induced analgesia in thermal and chemical tests. Pain 75:129–140

    Article  PubMed  CAS  Google Scholar 

  • Fattore L, Spano MS, Altea S, Angius F, Fadda P, Fratta W (2007) Cannabinoid self-administration in rats: sex differences and the influence of ovarian function. Br J Pharmacol 152:795–804

    Article  PubMed  CAS  Google Scholar 

  • Finnerup NB, Sindrup SH, Jensen TS (2007) Chronic neuropathic pain: mechanisms, drug targets and measurement. Fundam Clin Pharmacol 21:129–136

    Article  PubMed  CAS  Google Scholar 

  • Fuchs A, Rigaud M, Hogan QH (2007) Painful nerve injury shortens the intracellular Ca2+ signal in axotomized sensory neurons of rats. Anesthesiology 107:106–116

    Article  PubMed  CAS  Google Scholar 

  • Gallinat J, Rentzsch J, Roser P (2012) Neurophysiological effects of cannabinoids: implications for psychosis research. Curr Pharm Des 18:4938–4949

    Article  PubMed  CAS  Google Scholar 

  • Goto M, Miyahara I, Hirotsu K, Conway M, Yennawar N, Islam MM, Hutson SM (2005) Structural determinants for branched-chain aminotransferase isozyme-specific inhibition by the anticonvulsant drug gabapentin. J Biol Chem 280:37246–37256

    Article  PubMed  CAS  Google Scholar 

  • Gotta AW (2002) Valdecoxib (Pharmacia). Curr Opin Investig Drugs 3:240–245

    PubMed  CAS  Google Scholar 

  • Grecksch G, Bernstein HG, Becker A, Hollt V, Bogerts B (1999) Disruption of latent inhibition in rats with postnatal hippocampal lesions. Neuropsychopharmacology 20:525–532

    Article  PubMed  CAS  Google Scholar 

  • Grecksch G, Zhou D, Franke C, Schroder U, Sabel B, Becker A, Huether G (1997) Influence of olfactory bulbectomy and subsequent imipramine treatment on 5-hydroxytryptaminergic presynapses in the rat frontal cortex: behavioural correlates. Br J Pharmacol 122:1725–1731

    Article  PubMed  CAS  Google Scholar 

  • Hahm TS, Ahn HJ, Bae CD, Kim HS, Lim SW, Cho HS, Lee SM, Sim WS, Kim JA, Gwak MS, Choi SJ (2009) Protective effects of gabapentin on allodynia and alpha 2 delta 1-subunit of voltage-dependent calcium channel in spinal nerve-ligated rats. J Korean Med Sci 24:146–151

    Article  PubMed  CAS  Google Scholar 

  • Hama AT, Borsook D (2005) The effect of antinociceptive drugs tested at different times after nerve injury in rats. Anesth Analg 101:175–179

    Article  PubMed  CAS  Google Scholar 

  • Helme RD (2006) How useful are currently available tools for pain evaluation in elderly people with dementia? Nat Clin Pract Neurol 2:474–475

    Article  PubMed  Google Scholar 

  • Hooley JM, Delgado ML (2001) Pain insensitivity in the relatives of schizophrenia patients. Schizophr Res 47:265–273

    Article  PubMed  CAS  Google Scholar 

  • Jhaveri MD, Richardson D, Chapman V (2007) Endocannabinoid metabolism and uptake: novel targets for neuropathic and inflammatory pain. Br J Pharmacol 152:624–632

    Article  PubMed  CAS  Google Scholar 

  • Jochum T, Letzsch A, Greiner W, Wagner G, Sauer H, Bar KJ (2006) Influence of antipsychotic medication on pain perception in schizophrenia. Psychiatry Res 142:151–156

    Article  PubMed  CAS  Google Scholar 

  • Keilhoff G, Becker A, Grecksch G, Bernstein HG, Wolf G (2006) Cell proliferation is influenced by bulbectomy and normalized by imipramine treatment in a region-specific manner. Neuropsychopharmacology 31:1165–1176

    PubMed  CAS  Google Scholar 

  • Kelly S, Chapman V (2001) Selective cannabinoid CB1 receptor activation inhibits spinal nociceptive transmission in vivo. J Neurophysiol 86:3061–3064

    PubMed  CAS  Google Scholar 

  • Kim J, Alger BE (2004) Inhibition of cyclooxygenase-2 potentiates retrograde endocannabinoid effects in hippocampus. Nat Neurosci 7:697–698

    Article  PubMed  CAS  Google Scholar 

  • Kinsey SG, Long JZ, O’Neal ST, Abdullah RA, Poklis JL, Boger DL, Cravatt BF, Lichtman AH (2009) Blockade of endocannabinoid-degrading enzymes attenuates neuropathic pain. J Pharmacol Exp Ther 330:902–910

    Article  PubMed  CAS  Google Scholar 

  • Lee BH, Won R, Baik EJ, Lee SH, Moon CH (2000) An animal model of neuropathic pain employing injury to the sciatic nerve branches. Neuroreport 11:657–661

    Article  PubMed  CAS  Google Scholar 

  • Lee DH, Chung K, Chung JM (1997) Strain differences in adrenergic sensitivity of neuropathic pain behaviors in an experimental rat model. Neuroreport 8:3453–3456

    Article  PubMed  CAS  Google Scholar 

  • Lipska BK, Weinberger DR (1995) Genetic variation in vulnerability to the behavioral effects of neonatal hippocampal damage in rats. Proc Natl Acad Sci U S A 92:8906–8910

    Article  PubMed  CAS  Google Scholar 

  • Lovell JA, Stuesse SL, Cruce WL, Crisp T (2000) Strain differences in neuropathic hyperalgesia. Pharmacol Biochem Behav 65:141–144

    Article  PubMed  CAS  Google Scholar 

  • Martin WJ, Loo CM, Basbaum AI (1999) Spinal cannabinoids are anti-allodynic in rats with persistent inflammation. Pain 82:199–205

    Article  PubMed  CAS  Google Scholar 

  • Mehta V, Johnston A, Cheung R, Bello A, Langford RM (2008) Intravenous parecoxib rapidly leads to COX-2 inhibitory concentration of valdecoxib in the central nervous system. Clin Pharmacol Ther 83:430–435

    Article  PubMed  CAS  Google Scholar 

  • Myers RR, Heckman HM, Rodriguez M (1996) Reduced hyperalgesia in nerve-injured WLD mice: relationship to nerve fiber phagocytosis, axonal degeneration, and regeneration in normal mice. Exp Neurol 141:94–101

    Article  PubMed  CAS  Google Scholar 

  • O’Mahony CM, Clarke G, Gibney S, Dinan TG, Cryan JF (2011) Strain differences in the neurochemical response to chronic restraint stress in the rat: relevance to depression. Pharmacol Biochem Behav 97:690–699

    Article  PubMed  Google Scholar 

  • Ottani A, Leone S, Sandrini M, Ferrari A, Bertolini A (2006) The analgesic activity of paracetamol is prevented by the blockade of cannabinoid CB1 receptors. Eur J Pharmacol 531:280–281

    Article  PubMed  CAS  Google Scholar 

  • Padi SS, Jain NK, Singh S, Kulkarni SK (2004) Pharmacological profile of parecoxib: a novel, potent injectable selective cyclooxygenase-2 inhibitor. Eur J Pharmacol 491:69–76

    Article  PubMed  CAS  Google Scholar 

  • Pamplona FA, Menezes-de-Lima O Jr, Takahashi RN (2010) Aspirin-triggered lipoxin induces CB1-dependent catalepsy in mice. Neurosci Lett 470:33–37

    Article  PubMed  CAS  Google Scholar 

  • Paunescu H, Coman OA, Coman L, Ghita I, Georgescu SR, Draghia F, Fulga I (2011) Cannabinoid system and cyclooxygenases inhibitors. J Med Life 4:11–20

    PubMed  CAS  Google Scholar 

  • Petrosino S, Di Marzo V (2010) FAAH and MAGL inhibitors: therapeutic opportunities from regulating endocannabinoid levels. Curr Opin Investig Drugs 11:51–62

    PubMed  CAS  Google Scholar 

  • Portenoy RK, Hagen NA (1990) Breakthrough pain: definition, prevalence and characteristics. Pain 41:273–281

    Article  PubMed  CAS  Google Scholar 

  • Potvin S, Marchand S (2008) Hypoalgesia in schizophrenia is independent of antipsychotic drugs: a systematic quantitative review of experimental studies. Pain 138:70–78

    Article  PubMed  CAS  Google Scholar 

  • Potvin S, Stip E, Tempier A, Pampoulova T, Bentaleb LA, Lalonde P, Lipp O, Goffaux P, Marchand S (2008) Pain perception in schizophrenia: no changes in diffuse noxious inhibitory controls (DNIC) but a lack of pain sensitization. J Psychiatr Res 42:1010–1016

    Article  PubMed  Google Scholar 

  • Przewlocki R, Przewlocka B (2001) Opioids in chronic pain. Eur J Pharmacol 429:79–91

    Article  PubMed  CAS  Google Scholar 

  • Rigaud M, Gemes G, Barabas ME, Chernoff DI, Abram SE, Stucky CL, Hogan QH (2008) Species and strain differences in rodent sciatic nerve anatomy: implications for studies of neuropathic pain. Pain 136:188–201

    Article  PubMed  Google Scholar 

  • Robinson I, Meert TF (2005) Stability of neuropathic pain symptoms in partial sciatic nerve ligation in rats is affected by suture material. Neurosci Lett 373:125–129

    Article  PubMed  CAS  Google Scholar 

  • Rode F, Thomsen M, Brolos T, Jensen DG, Blackburn-Munro G, Bjerrum OJ (2007) The importance of genetic background on pain behaviours and pharmacological sensitivity in the rat spared serve injury model of peripheral neuropathic pain. Eur J Pharmacol 564:103–111

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal SH, Porter KA, Coffey B (1990) Pain insensitivity in schizophrenia. Case report and review of the literature. Gen Hosp Psychiatry 12:319–322

    Article  PubMed  CAS  Google Scholar 

  • Rupp A, Schmahl W, Lederer W, Matiasek K (2007) Strain differences in the branching of the sciatic nerve in rats. Anat Histol Embryol 36:202–208

    Article  PubMed  CAS  Google Scholar 

  • Sagar DR, Kelly S, Millns PJ, O’Shaughnessey CT, Kendall DA, Chapman V (2005) Inhibitory effects of CB1 and CB2 receptor agonists on responses of DRG neurons and dorsal horn neurons in neuropathic rats. Eur J Neurosci 22:371–379

    Article  PubMed  Google Scholar 

  • Scholl JL, Renner KJ, Forster GL, Tejani-Butt S (2010) Central monoamine levels differ between rat strains used in studies of depressive behavior. Brain Res 1355:41–51

    Article  PubMed  CAS  Google Scholar 

  • Schröder H, Höllt V, Becker A (2011) Parecoxib and its metabolite valdecoxib directly interact with cannabinoid binding sites in CB1-expressing HEK 293 cells and rat brain tissue. Neurochem Int 58:9–13

    Article  PubMed  Google Scholar 

  • Singh MK, Giles LL, Nasrallah HA (2006) Pain insensitivity in schizophrenia: trait or state marker? J Psychiatr Pract 12:90–102

    Article  PubMed  Google Scholar 

  • Slanina KA, Schweitzer P (2005) Inhibition of cyclooxygenase-2 elicits a CB1-mediated decrease of excitatory transmission in rat CA1 hippocampus. Neuropharmacology 49:653–659

    Article  PubMed  CAS  Google Scholar 

  • Sommer C, Schafers M (1998) Painful mononeuropathy in C57BL/Wld mice with delayed wallerian degeneration: differential effects of cytokine production and nerve regeneration on thermal and mechanical hypersensitivity. Brain Res 784:154–162

    Article  PubMed  CAS  Google Scholar 

  • Stichtenoth DO (2004) The second generation of COX-2 inhibitors: clinical pharmacological point of view. Mini Rev Med Chem 4:617–624

    Article  PubMed  CAS  Google Scholar 

  • Telleria-Diaz A, Schmidt M, Kreusch S, Neubert AK, Schache F, Vazquez E, Vanegas H, Schaible HG, Ebersberger A (2010) Spinal antinociceptive effects of cyclooxygenase inhibition during inflammation: Involvement of prostaglandins and endocannabinoids. Pain 148:26–35

    Article  PubMed  CAS  Google Scholar 

  • Treede RD, Jebseb TS, Campbell JN, Cruccu G, Dostrovsky JO, Gruffin JW, Hansson P, Hughes R, Nurmikko T, Serra J (2007) Neuropathic pain. Redefinition and a grading system for clinical and research porposes. Neurology 70:1630–1635

    Article  PubMed  Google Scholar 

  • Vinod KY, Xie S, Psychoyos D, Hungund BL, Cooper TB, Tejani-Butt SM (2012) Dysfunction in fatty acid amide hydrolase is associated with depressive-like behavior in Wistar Kyoto rats. PLoS One 7:e36743

    Article  PubMed  Google Scholar 

  • Vissers K, De JR, Hoffmann V, Heylen R, Crul B, Meert T (2003) Internal and external factors affecting the development of neuropathic pain in rodents. Is it all about pain? Pain Pract 3:326–342

    Article  PubMed  CAS  Google Scholar 

  • Vukojevic K, Lovric-Kojundzic S, Sapunar D (2007) Hyperalgesia-type response reveals no difference in pain-related behavior between Wistar and Sprague–Dawley rats. Bosn J Basic Med Sci 7:121–126

    PubMed  Google Scholar 

  • Yeomans DC, Proudfit HK (1996) Nociceptive responses to high and low rates of noxious cutaneous heating are mediated by different nociceptors in the rat: electrophysiological evidence. Pain 68:141–150

    Article  PubMed  CAS  Google Scholar 

  • Yoon YW, Lee DH, Lee BH, Chung K, Chung JM (1999) Different strains and substrains of rats show different levels of neuropathic pain behaviors. Exp Brain Res 129:167–171

    Article  PubMed  CAS  Google Scholar 

  • Zhang RX, Lao L, Qiao JT, Ruda MA (2003) Strain differences in pain sensitivity and expression of preprodynorphin mRNA in rats following peripheral inflammation. Neurosci Lett 353:213–216

    Article  PubMed  CAS  Google Scholar 

  • Zimmer A, Zimmer AM, Hohmann AG, Herkenham M, Bonner TI (1999) Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc Natl Acad Sci U S A 96:5780–5785

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Michaela Böx, Petra Dehmel, Cathleen Knape, Dana Meyer, Gabriele Schulze, Helga Tischmeyer, and Carlo Angioni for their expert technical assistance.

Conflict of interest

The authors have no conflicts of interest related to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Becker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, A., Geisslinger, G., Murín, R. et al. Cannabinoid-mediated diversity of antinociceptive efficacy of parecoxib in Wistar and Sprague Dawley rats in the chronic constriction injury model of neuropathic pain. Naunyn-Schmiedeberg's Arch Pharmacol 386, 369–382 (2013). https://doi.org/10.1007/s00210-013-0839-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-013-0839-2

Keywords

Navigation