Skip to main content

Advertisement

Log in

Evaluation of antibodies directed against human protease-activated receptor-2

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Protease-activated receptor 2 (PAR2) is a G protein-coupled receptor activated by intramolecular docking of a tethered ligand that is released by the actions of proteases, mainly of the serine protease family. Here, we evaluate four commercially available anti-PAR2 antibodies, SAM11, C17, N19 and H99, demonstrating marked differences in the ability of these reagents to detect the target receptor in Western blot, immunocytochemical and flow cytometry applications. In Western blot analysis, we evaluated antibody reactivity against both ectopic and endogenous receptors. Against material from transfected cells, we show that SAM11 and N19, and to a lesser extent C17, but not H99, are able to detect ectopic PAR2. Interestingly, these Western blot analyses indicate that N19 and C17 detect conformations of ectopic PAR2 distinct to those recognised by SAM11. Significantly, our data also indicate that Western blot signal detected by SAM11 and C17, and much of the signal detected by N19, against cells endogenously expressing PAR2 is non-specific. Despite confounding non-specific signals, we were able to discern N19 reactivity against endogenous PAR2 as a broad smear that we also observed in ectopically expressing human and mouse cells and that is sensitive to loss of N-glycosylation. In immunocytochemistry analysis, each antibody is able to detect ectopic PAR2 although it appears that H99 detects only a subset of the ectopically expressed receptor. In addition, SAM11 and N19 are able to detect both ectopic and endogenous cell surface PAR2 by flow cytometry. In summary: (1) each antibody can detect ectopic PAR2 by immunocytochemical analysis with SAM11 and N19 suitable for cell surface detection of both ectopic and endogenous receptor by flow cytometry; (2) in Western blot analysis, N19, SAM11 and C17 can detect ectopically expressed PAR2, with only N19 able to detect the endogenous receptor by this technique and (3) in each of these approaches, appropriate controls are essential to ensure that non-specific reactivity is identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams MN, Christensen ME, He Y, Waterhouse NJ, Hooper JD (2011a) The role of palmitoylation in signalling, cellular trafficking and plasma membrane localization of protease-activated receptor-2. PLoS One 6:e28018

    Article  PubMed  CAS  Google Scholar 

  • Adams MN, Ramachandran R, Yau MK, Suen JY, Fairlie DP, Hollenberg MD, Hooper JD (2011b) Structure, function and pathophysiology of protease activated receptors. Pharmacol Ther 130:248–282

    Article  PubMed  CAS  Google Scholar 

  • Amiable N, Tat SK, Lajeunesse D, Duval N, Pelletier JP, Martel-Pelletier J, Boileau C (2009) Proteinase-activated receptor (PAR)-2 activation impacts bone resorptive properties of human osteoarthritic subchondral bone osteoblasts. Bone 44:1143–1150

    Article  PubMed  CAS  Google Scholar 

  • Andrade-Gordon P, Maryanoff BE, Derian CK, Zhang HC, Addo MF, Darrow AL, Eckardt AJ, Hoekstra WJ, McComsey DF, Oksenberg D, Reynolds EE, Santulli RJ, Scarborough RM, Smith CE, White KB (1999) Design, synthesis, and biological characterization of a peptide-mimetic antagonist for a tethered-ligand receptor. Proc Natl Acad Sci U S A 96:12257–12262

    Article  PubMed  CAS  Google Scholar 

  • Arizmendi NG, Abel M, Mihara K, Davidson C, Polley D, Nadeem A, El Mays T, Gilmore BF, Walker B, Gordon JR, Hollenberg MD, Vliagoftis H (2011) Mucosal allergic sensitization to cockroach allergens is dependent on proteinase activity and proteinase-activated receptor-2 activation. J Immunol 186:3164–3172

    Article  PubMed  CAS  Google Scholar 

  • Asano-Kato N, Fukagawa K, Okada N, Dogru M, Tsubota K, Fujishima H (2005) Tryptase increases proliferative activity of human conjunctival fibroblasts through protease-activated receptor-2. Invest Ophthalmol Vis Sci 46:4622–4626

    Article  PubMed  Google Scholar 

  • Bohm SK, Khitin LM, Grady EF, Aponte G, Payan DG, Bunnett NW (1996) Mechanisms of desensitization and resensitization of proteinase-activated receptor-2. J Biol Chem 271:22003–22016

    Article  PubMed  CAS  Google Scholar 

  • Buddenkotte J, Stroh C, Engels IH, Moormann C, Shpacovitch VM, Seeliger S, Vergnolle N, Vestweber D, Luger TA, Schulze-Osthoff K, Steinhoff M (2005) Agonists of proteinase-activated receptor-2 stimulate upregulation of intercellular cell adhesion molecule-1 in primary human keratinocytes via activation of NF-kappa B. J Invest Dermatol 124:38–45

    Article  PubMed  CAS  Google Scholar 

  • Camerer E, Huang W, Coughlin SR (2000) Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc Natl Acad Sci USA 97:5255–5260

    Article  PubMed  CAS  Google Scholar 

  • Christerson U, Keita AV, Soderholm JD, Gustafson-Svard C (2009) Increased expression of protease-activated receptor-2 in mucosal mast cells in Crohn's ileitis. J Crohns Colitis 3:100–108

    Article  PubMed  Google Scholar 

  • Compton SJ, Sandhu S, Wijesuriya SJ, Hollenberg MD (2002) Glycosylation of human proteinase-activated receptor-2 (hPAR2): role in cell surface expression and signalling. Biochem J 368:495–505

    Article  PubMed  CAS  Google Scholar 

  • Csernok E, Ai M, Gross WL, Wicklein D, Petersen A, Lindner B, Lamprecht P, Holle JU, Hellmich B (2006) Wegener autoantigen induces maturation of dendritic cells and licenses them for Th1 priming via the protease-activated receptor-2 pathway. Blood 107:4440–4448

    Article  PubMed  CAS  Google Scholar 

  • Dery O, Thoma MS, Wong H, Grady EF, Bunnett NW (1999) Trafficking of proteinase-activated receptor-2 and beta-arrestin-1 tagged with green fluorescent protein. Beta-Arrestin-dependent endocytosis of a proteinase receptor. J Biol Chem 274:18524–18535

    Article  PubMed  CAS  Google Scholar 

  • Ferrell WR, Kelso EB, Lockhart JC, Plevin R, McInnes IB (2010) Protease-activated receptor 2: a novel pathogenic pathway in a murine model of osteoarthritis. Ann Rheum Dis 69:2051–2054

    Article  PubMed  Google Scholar 

  • Georgy SR, Pagel CN, Wong DM, Sivagurunathan S, Loh LH, Myers DE, Hollenberg MD, Pike RN, Mackie EJ (2010) Proteinase-activated receptor-2 (PAR2) and mouse osteoblasts: regulation of cell function and lack of specificity of PAR2-activating peptides. Clin Exp Pharmacol Physiol 37:328–336

    Article  PubMed  CAS  Google Scholar 

  • Georgy SR, Pagel CN, Ghasem-Zadeh A, Zebaze RM, Pike RN, Sims NA, Mackie EJ (2011) Proteinase-activated receptor-2 is required for normal osteoblast and osteoclast differentiation during skeletal growth and repair. Bone 50:704–712

    Article  PubMed  Google Scholar 

  • Hamdani N, van der Velden J (2009) Lack of specificity of antibodies directed against human beta-adrenergic receptors. Naunyn Schmiedebergs Arch Pharmacol 379:403–407

    Article  PubMed  CAS  Google Scholar 

  • He Y, Wortmann A, Burke LJ, Reid JC, Adams MN, Abdul-Jabbar I, Quigley JP, Leduc R, Kirchhofer D, Hooper JD (2010) Proteolysis-induced N-terminal ectodomain shedding of the integral membrane glycoprotein CUB domain-containing protein 1 (CDCP1) is accompanied by tyrosine phosphorylation of its C-terminal domain and recruitment of Src and PKCδ. J Biol Chem 285:26162–26173

    Article  PubMed  CAS  Google Scholar 

  • Hooper JD, Zijlstra A, Aimes RT, Liang H, Claassen GF, Tarin D, Testa JE, Quigley JP (2003) Subtractive immunization using highly metastatic human tumor cells identifies SIMA135/CDCP1, a 135 kDa cell surface phosphorylated glycoprotein antigen. Oncogene 22:1783–1794

    Article  PubMed  CAS  Google Scholar 

  • Ishihara H, Connolly AJ, Zeng D, Kahn ML, Zheng YW, Timmons C, Tram T, Coughlin SR (1997) Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386:502–506

    Article  PubMed  CAS  Google Scholar 

  • Jacob C, Cottrell GS, Gehringer D, Schmidlin F, Grady EF, Bunnett NW (2005) c-Cbl mediates ubiquitination, degradation, and down-regulation of human protease-activated receptor 2. J Biol Chem 280:16076–16087

    Article  PubMed  CAS  Google Scholar 

  • Jositsch G, Papadakis T, Haberberger RV, Wolff M, Wess J, Kummer W (2009) Suitability of muscarinic acetylcholine receptor antibodies for immunohistochemistry evaluated on tissue sections of receptor gene-deficient mice. Naunyn Schmiedebergs Arch Pharmacol 379:389–395

    Article  PubMed  CAS  Google Scholar 

  • Kagota S, Chia E, McGuire JJ (2011) Preserved arterial vasodilatation via endothelial protease-activated receptor-2 in obese type 2 diabetic mice. Br J Pharmacol 164:358–71

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann R, Oettel C, Horn A, Halbhuber KJ, Eitner A, Krieg R, Katenkamp K, Henklein P, Westermann M, Bohmer FD, Ramachandran R, Saifeddine M, Hollenberg MD, Settmacher U (2009) Met receptor tyrosine kinase transactivation is involved in proteinase-activated receptor-2-mediated hepatocellular carcinoma cell invasion. Carcinogenesis 30:1487–1496

    Article  PubMed  CAS  Google Scholar 

  • Kaushal A, Myers SA, Dong Y, Lai J, Tan OL, Bui LT, Hunt ML, Digby MR, Samaratunga H, Gardiner RA, Clements JA, Hooper JD (2008) A novel transcript from the KLKP1 gene is androgen regulated, down-regulated during prostate cancer progression and encodes the first non-serine protease identified from the human kallikrein gene locus. Prostate 68:381–399

    Article  PubMed  CAS  Google Scholar 

  • Kelso EB, Lockhart JC, Hembrough T, Dunning L, Plevin R, Hollenberg MD, Sommerhoff CP, McLean JS, Ferrell WR (2006) Therapeutic promise of proteinase-activated receptor-2 antagonism in joint inflammation. J Pharmacol Exp Ther 316:1017–1024

    Article  PubMed  CAS  Google Scholar 

  • Lohman RJ, Cotterell AJ, Suen J, Liu L, Do AT, Vesey DA, Fairlie DP (2012) Antagonism of protease-activated receptor 2 protects against experimental colitis. J Pharmacol Exp Ther 340(2):256–265

    Article  PubMed  CAS  Google Scholar 

  • Macfarlane SR, Seatter MJ, Kanke T, Hunter GD, Plevin R (2001) Proteinase-activated receptors. Pharmacol Rev 53:245–282

    PubMed  CAS  Google Scholar 

  • Michel MC, Wieland T, Tsujimoto G (2009) How reliable are G-protein-coupled receptor antibodies? Naunyn Schmiedebergs Arch Pharmacol 379:385–388

    Article  PubMed  CAS  Google Scholar 

  • Miyauchi S, Hirasawa A, Iga T, Liu N, Itsubo C, Sadakane K, Hara T, Tsujimoto G (2009) Distribution and regulation of protein expression of the free fatty acid receptor GPR120. Naunyn Schmiedebergs Arch Pharmacol 379:427–434

    Article  PubMed  CAS  Google Scholar 

  • Mize GJ, Wang W, Takayama TK (2008) Prostate-specific kallikreins-2 and -4 enhance the proliferation of DU-145 prostate cancer cells through protease-activated receptors-1 and -2. Mol Cancer Res 6:1043–1051

    Article  PubMed  CAS  Google Scholar 

  • Molino M, Barnathan ES, Numerof R, Clark J, Dreyer M, Cumashi A, Hoxie JA, Schechter N, Woolkalis M, Brass LF (1997) Interactions of mast cell tryptase with thrombin receptors and PAR-2. J Biol Chem 272:4043–4049

    Article  PubMed  CAS  Google Scholar 

  • Moretti S, Bellocchio S, Bonifazi P, Bozza S, Zelante T, Bistoni F, Romani L (2008) The contribution of PARs to inflammation and immunity to fungi. Mucosal Immunol 1:156–168

    Article  PubMed  CAS  Google Scholar 

  • Nystedt S, Emilsson K, Wahlestedt C, Sundelin J (1994) Molecular cloning of a potential proteinase activated receptor. Proc Natl Acad Sci U S A 91:9208–9212

    Article  PubMed  CAS  Google Scholar 

  • Nystedt S, Emilsson K, Larsson AK, Strombeck B, Sundelin J (1995) Molecular cloning and functional expression of the gene encoding the human proteinase-activated receptor 2. Eur J Biochem 232:84–89

    Article  PubMed  CAS  Google Scholar 

  • Oikonomopoulou K, Hansen KK, Saifeddine M, Tea I, Blaber M, Blaber SI, Scarisbrick I, Andrade-Gordon P, Cottrell GS, Bunnett NW, Diamandis EP, Hollenberg MD (2006) Proteinase-activated receptors, targets for kallikrein signaling. J Biol Chem 281:32095–32112

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran R, Noorbakhsh F, Defea K, Hollenberg MD (2012) Targeting proteinase-activated receptors: therapeutic potential and challenges. Nat Rev Drug Disc 11:69–86

    Article  CAS  Google Scholar 

  • Ramsay AJ, Dong Y, Hunt ML, Linn M, Samaratunga H, Clements JA, Hooper JD (2008) Kallikrein-related peptidase 4 (KLK4) initiates intracellular signaling via protease-activated receptors (PARs). KLK4 and PAR-2 are co-expressed during prostate cancer progression. J Biol Chem 283:12293–12304

    Article  PubMed  CAS  Google Scholar 

  • Ricks TK, Trejo J (2009) Phosphorylation of protease-activated receptor-2 differentially regulates desensitization and internalization. J Biol Chem 284:34444–34457

    Article  PubMed  CAS  Google Scholar 

  • Roosterman D, Schmidlin F, Bunnett NW (2003) Rab5a and rab11a mediate agonist-induced trafficking of protease-activated receptor 2. Am J Physiol 284:C1319–1329

    CAS  Google Scholar 

  • Russo A, Soh UJ, Paing MM, Arora P, Trejo J (2009) Caveolae are required for protease-selective signaling by protease-activated receptor-1. Proc Natl Acad Sci U S A 106:6393–6397

    Article  PubMed  CAS  Google Scholar 

  • Suen JY, Barry GD, Lohman RJ, Halili MA, Cotterell AJ, Le GT, Fairlie DP (2012) Modulating human proteinase activated receptor 2 with a novel antagonist (GB88) and agonist (GB110). Br J Pharmacol 165:1413–1423

    Article  PubMed  CAS  Google Scholar 

  • Vu TK, Hung DT, Wheaton VI, Coughlin SR (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64:1057–1068

    Article  PubMed  CAS  Google Scholar 

  • Wortmann A, He Y, Deryugina EI, Quigley JP, Hooper JD (2009) The cell surface glycoprotein CDCP1 in cancer–insights, opportunities, and challenges. IUBMB life 61:723–730

    Article  PubMed  CAS  Google Scholar 

  • Xu WF, Andersen H, Whitmore TE, Presnell SR, Yee DP, Ching A, Gilbert T, Davie EW, Foster DC (1998) Cloning and characterization of human protease-activated receptor 4. Proc Natl Acad Sci USA 95:6642–6646

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Health and Medical Research Council grant #614206 and a Cancer Council Queensland grant (J. D. H.), and an Australian Post-Graduate Award (M. N. A.). We thank Dr Patricia Andrade-Gordon (Johnson & Johnson Pharmaceutical Research and Development, Spring House, PA) for NILF, NILF-PAR1, NILF-PAR2 and NILF-PAR4 cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Hooper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, M.N., Pagel, C.N., Mackie, E.J. et al. Evaluation of antibodies directed against human protease-activated receptor-2. Naunyn-Schmiedeberg's Arch Pharmacol 385, 861–873 (2012). https://doi.org/10.1007/s00210-012-0783-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-012-0783-6

Keywords

Navigation