Skip to main content

Advertisement

Log in

Stimulation of norepinephrine transporter function by fasudil, a Rho kinase inhibitor, in cultured bovine adrenal medullary cells

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Norepinephrine transporter (NET) regulates noradrenergic synaptic transmission by controlling extracellular levels of norepinephrine (NE). The small GTPase, RhoA, and its downstream effector Rho kinase (ROCK) are involved in the regulation of actin cytoskeleton and focal adhesion/stress fiber formation, which may play an important role in various functions of the sympathetic nervous system. We report here the effect of fasudil, a ROCK inhibitor, on the functions of NET in cultured bovine adrenal medullary cells as a model of sympathetic neurons. Treatment of bovine adrenal medullary cells with fasudil caused an increase in [3H]NE uptake in time (8–120 h) and concentration (10–100 μM)-dependent manner. Another ROCK inhibitor, Y-27632 (10–100 μM, 1 day), also increased [3H]NE uptake by the cells. Kinetics analysis of the effect of fasudil on NE transport showed a significant increase in the V max of NE transport with little change in K m. When both extracellular and intracellular Ca2+ were removed by the deprivation of extracellular Ca2+ and BAPTA-AM, a cell-permeable Ca2+ chelator, [3H]NE uptake induced by fasudil was completely abolished. Nocodazole, an inhibitor of microtubule polymerization, but not cytochalasin D, an inhibitor of actin polymerization, suppressed the stimulatory effect of fasudil on [3H]NE uptake. The present findings suggest that the ROCK inhibitor fasudil up-regulates NET function in a Ca2+-dependent and/or nocodazole-sensitive pathway in adrenal medullary cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alabed YZ, Pool M, Ong Tone S, Fournier AE (2007) Identification of CRMP4 as a convergent regulator of axon outgrowth inhibition. J Neurosci 27:1702–1711

    Article  PubMed  CAS  Google Scholar 

  • Amano M, Fukata Y, Kaibuchi K (2000) Regulation and functions of Rho-associated kinase. Exp Cell Res 261:44–51

    Article  PubMed  CAS  Google Scholar 

  • Amara SG, Kuhar MJ (1993) Neurotransmitter transporters: recent progress. Annu Rev Neurosci 16:73–93

    Article  PubMed  CAS  Google Scholar 

  • Baker EL, Blakely RD (1995) Noradrenaline and serotonin transporters: molecular targets of antidepressant drugs. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven, New York, pp 321–333

    Google Scholar 

  • Bönisch H, Brüss M (1994) The noradrenaline transporter of the neuronal plasma membrane. Ann N Y Acad Sci 733:193–202

    Article  PubMed  Google Scholar 

  • Budzyn K, Marley PD, Sobey CG (2006) Targeting Rho and Rho-kinase in the treatment of cardiovascular disease. Trends Pharmacol Sci 27:97–104

    Article  PubMed  CAS  Google Scholar 

  • Ceña V, García AG, Montiel C, Sánchez-García P (1984) Uptake of [3H]-nicotine and [3H]-noradrenaline by cultured chromaffin cells. Br J Pharmacol 81:119–123

    Article  PubMed  Google Scholar 

  • Duan WG, Shang J, Jiang ZZ, Yao JC, Yun Y, Yan M, Shu B, Lin Q, Yu ZP, Zhang LY (2009) Rho kinase inhibitor Y-27632 down-regulates norepinephrine synthesis and release in PC12 cells. Basic Clin Pharmacol Toxicol 104:434–440

    Article  PubMed  CAS  Google Scholar 

  • Fukata Y, Amano M, Kaibuchi K (2001) Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol Sci 22:32–39

    Article  PubMed  CAS  Google Scholar 

  • Fukuda T, Takekoshi K, Nanmoku T, Ishii K, Isobe K, Kawakami Y (2005) Inhibition of the RhoA/Rho kinase system attenuates catecholamine biosynthesis in PC 12 rat pheochromocytoma cells. Biochim Biophys Acta 1726:28–33

    Article  PubMed  CAS  Google Scholar 

  • Hara K, Yanagihara N, Minami K, Ueno S, Toyohira Y, Sata T, Kawamura M, Brüss M, Bönisch H, Shigematsu A, Izumi F (1998) Ketamine interacts with the noradrenaline transporter at a site partly overlapping the desipramine binding site. Naunyn Schmiedeberg's Arch Pharmacol 358:328–333

    Article  CAS  Google Scholar 

  • Honda A, Yamada M, Saisu H, Takahashi H, Mori KJ, Abe T (2002) Direct, Ca2+-dependent interaction between tubulin and synaptotagmin I: a possible mechanism for attaching synaptic vesicles to microtubules. J Biol Chem 277:20234–20242

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki T, Maekawa M, Fujisawa K, Okawa K, Iwamatsu A, Fujita A, Watanabe N, Saito Y, Kakizuka A, Morii N, Narumiya S (1996) The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J 15:1885–1893

    PubMed  CAS  Google Scholar 

  • Itoh H, Toyohira Y, Ueno S, Saeki S, Zhang H, Furuno Y, Takahashi K, Tsutsui M, Hachisuka K, Yanagihara N (2010) Upregulation of norepinephrine transporter function by prolonged exposure to nicotine in cultured bovine adrenal medullary cells. Naunyn Schmiedeberg's Arch Pharmacol 382:235–243

    Article  CAS  Google Scholar 

  • Jeannotte AM, Sidhu A (2008) Regulated interactions of the norepineprhine transporter by the actin and microtubule cytoskeletons. J Neurochem 105:1668–1682

    Article  PubMed  CAS  Google Scholar 

  • Kumai T, Takeba Y, Matsumoto N, Nakaya S, Tsuzuki Y, Yanagida Y, Hayashi M, Kobayashi S (2007) Fasudil attenuates sympathetic nervous activity in the adrenal medulla of spontaneously hypertensive rats. Life Sci 81:1193–1198

    Article  PubMed  CAS  Google Scholar 

  • Lau CL, O'Shea RD, Broberg BV, Bischof L, Beart PM (2011) The Rho kinase inhibitor fasudil up-regulates astrocytic glutamate transport subsequent to actin remodelling in murine cultured astrocytes. Br J Pharmacol 163:533–545

    Article  PubMed  CAS  Google Scholar 

  • Leung T, Manser E, Tan L, Lim L (1995) A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J Biol Chem 270:29051–29054

    Article  PubMed  CAS  Google Scholar 

  • Lingen B, Brüss M, Bönisch H (1994) Cloning and expression of the bovine sodium- and chloride-dependent noradrenaline transporter. FEBS Lett 342:235–238

    Article  PubMed  CAS  Google Scholar 

  • Mandela P, Ordway GA (2006) The norepinephrine transporter and its regulation. J Neurochem 97:310–333

    Article  PubMed  CAS  Google Scholar 

  • Matsui T, Amano M, Yamamoto T, Chihara K, Nakafuku M, Ito M, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J 15:2208–2216

    PubMed  CAS  Google Scholar 

  • Michael-Hepp J, Blum B, Bönisch H (1992) Characterization of the [3H]-desipramine binding site of the bovine adrenomedullary plasma membrane. Naunyn Schmiedeberg's Arch Pharmacol 346:203–207

    Article  CAS  Google Scholar 

  • Mueller BK, Mack H, Teusch N (2005) Rho kinase, a promising drug target for neurological disorders. Nat Rev Drug Discov 4:387–398

    Article  PubMed  CAS  Google Scholar 

  • Muñiz M, Martín ME, Hidalgo J, Velasco A (1997) Protein kinase A activity is required for the budding of constitutive transport vesicles from the trans-Golgi network. Proc Natl Acad Sci U S A 94:14461–14466

    Article  PubMed  Google Scholar 

  • Nakajima M, Uematsu T, Kanemaru M (1992) Phase I study of AT-877 (fasudil hydrochloride) in healthy subjects: single and multiple administration. Jpn Pharmacol Ther 20:1559–1585

    Google Scholar 

  • Pacholczyk T, Blakely RD, Amara SG (1991) Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature 350:350–354

    Article  PubMed  CAS  Google Scholar 

  • Riento K, Ridley AJ (2003) ROCKs: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 4:446–456

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Tani E, Fujikawa H, Kaibuchi K (2000) Involvement of Rho-kinase-mediated phosphorylation of myosin light chain in enhancement of cerebral vasospasm. Circ Res 87:195–200

    Article  PubMed  CAS  Google Scholar 

  • Shimokawa H, Takeshita A (2005) Rho-kinase is an important therapeutic target in cardiovascular medicine. Arterioscler Thromb Vasc Biol 25:1767–1775

    Article  PubMed  CAS  Google Scholar 

  • Shimokawa H, Seto M, Katsumata N, Amano M, Kozai T, Yamawaki T, Kuwata K, Kandabashi T, Egashira K, Ikegaki I, Asano T, Kaibuchi K, Takeshita A (1999) Rho-kinase-mediated pathway induces enhanced myosin light chain phosphorylations in a swine model of coronary artery spasm. Cardiovasc Res 43:1029–1039

    Article  PubMed  CAS  Google Scholar 

  • Sung U, Blakely RD (2007) Calcium-dependent interactions of the human norepinephrine transporter with syntaxin 1A. Mol Cell Neurosci 34:251–260

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Shibuya M, Satoh S, Sugiyama H, Seto M, Takakura K (2008) Safety and efficacy of fasudil monotherapy and fasudil–ozagrel combination therapy in patients with subarachnoid hemorrhage: sub-analysis of the post-marketing surveillance study. Neurol Med Chir (Tokyo) 48:241–247, discussion 247-248

    Article  Google Scholar 

  • Takakura K, Sugita K, Kikuchi H, Saito I, Shibuya M, Suzuki Y, Sasaki T, Takemae N, Okamoto S (1992) Effective dose and safety of AT-877 (fasudil hydrochloride) on cerebral vasospasm after aneurysmal subarachnoid hemorrhage: phase II study. Jpn Pharmacol Ther 20:1587–1607

    Google Scholar 

  • Tamura M, Nakao H, Yoshizaki H, Shiratsuchi M, Shigyo H, Yamada H, Ozawa T, Totsuka J, Hidaka H (2005) Development of specific Rho-kinase inhibitors and their clinical application. Biochim Biophys Acta 1754:245–252

    Article  PubMed  CAS  Google Scholar 

  • Toyohira Y, Yanagihara N, Minami K, Ueno S, Uezono Y, Tachikawa E, Kondo Y, Kashimoto T, Izumi F (1998) Down-regulation of the noradrenaline transporter by interferon-α in cultured bovine adrenal medullary cells. J Neurochem 70:1441–1447

    Article  PubMed  CAS  Google Scholar 

  • Wada A, Takara H, Izumi F, Kobayashi H, Yanagihara N (1985) Influx of 22Na through acetylcholine receptor-associated Na channels: relationship between 22Na influx, 45Ca influx and secretion of catecholamines in cultured bovine adrenal medulla cells. Neuroscience 15:283–292

    Article  PubMed  CAS  Google Scholar 

  • Yanagihara N, Isosaki M, Ohuchi T, Oka M (1979) Muscarinic receptor-mediated increase in cyclic GMP level in isolated bovine adrenal medullary cells. FEBS Lett 105:296–298

    Article  PubMed  CAS  Google Scholar 

  • Yanagihara N, Wada A, Izumi F (1987) Effects of α2-adrenergic agonists on carbachol-stimulated catecholamine synthesis in cultured bovine adrenal medullary cells. Biochem Pharmacol 36:3823–3828

    Article  PubMed  CAS  Google Scholar 

  • Yanagihara N, Oishi Y, Yamamoto H, Tsutsui M, Kondoh J, Sugiura T, Miyamoto E, Izumi F (1996) Phosphorylation of chromogranin A and catecholamine secretion stimulated by elevation of intracellular Ca2+ in cultured bovine adrenal medullary cells. J Biol Chem 271:17463–17468

    Article  PubMed  CAS  Google Scholar 

  • Ying H, Biroc SL, Li WW, Alicke B, Xuan JA, Pagila R, Ohashi Y, Okada T, Kamata Y, Dinter H (2006) The Rho kinase inhibitor fasudil inhibits tumor progression in human and rat tumor models. Mol Cancer Ther 5:2158–2164

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura R, Yanagihara N, Hara K, Nakamura J, Toyohira Y, Ueno S, Izumi F (2001) Dual phases of functional change in norepinephrine transporter in cultured bovine adrenal medullary cells by long-term treatment with clozapine. J Neurochem 77:1018–1026

    Article  PubMed  CAS  Google Scholar 

  • Zahniser NR, Doolen S (2001) Chronic and acute regulation of Na+/Cl-dependent neurotransmitter transporters: drugs, substrates, presynaptic receptors, and signaling systems. Pharmacol Ther 92:21–55

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported, in part, by a Grant-in-Aid (23617035, 23590159, and 23617036) for Scientific Research (C) from the Japan Society for the Promotion of Science. We are grateful to Asahi Kasei Corporation (Tokyo, Japan) for providing us with generous supply of fasudil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyuki Yanagihara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satoh, N., Toyohira, Y., Itoh, H. et al. Stimulation of norepinephrine transporter function by fasudil, a Rho kinase inhibitor, in cultured bovine adrenal medullary cells. Naunyn-Schmiedeberg's Arch Pharmacol 385, 921–931 (2012). https://doi.org/10.1007/s00210-012-0773-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-012-0773-8

Keywords

Navigation