Skip to main content

Advertisement

Log in

Adenosine receptor subtype-selective antagonists in inflammation and hyperalgesia

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

In this study, we examined the effects of systemic and local administration of the subtype-selective adenosine receptor antagonists PSB-36, PSB-1115, MSX-3, and PSB-10 on inflammation and inflammatory hyperalgesia. Pharmacological blockade of adenosine receptor subtypes after systemic application of antagonists generally led to a decreased edema formation after formalin injection and, with the exception of A3 receptor antagonism, also after the carrageenan injection. The selective A2B receptor antagonist PSB-1115 showed a biphasic, dose-dependent effect in the carrageenan test, increasing edema formation at lower doses and reducing it at a high dose. A1 and A2B antagonists diminished pain-related behaviors in the first phase of the formalin test, while the second, inflammatory phase was attenuated by A2B and A3 antagonists. The A2B antagonist was particularly potent in reducing inflammatory pain dose-dependently reaching the maximum effect at a low dose of 3 mg/kg. Inflammatory hyperalgesia was totally eliminated by the A2A antagonist MSX-3 at a dose of 10 mg/kg. In contrast to the A1 antagonist, the selective antagonists of A2A, A2B, and A3 receptors were also active upon local administration. Our results demonstrate that the blockade of adenosine receptor subtypes can decrease the magnitude of inflammatory responses. Selective A2A antagonists may be useful for the treatment of inflammatory hyperalgesia, while A2B antagonists have potential as analgesic drugs for the treatment of inflammatory pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abo-Salem OM, Hayallah AM, Bilkei-Gorzo A, Filipek B, Zimmer A, Muller CE (2004) Antinociceptive effects of novel A2B adenosine receptor antagonists. J Pharmacol Exp Ther 308:358–366

    Article  PubMed  CAS  Google Scholar 

  • Akkari R, Burbiel JC, Hockemeyer J, Muller CE (2006) Recent progress in the development of adenosine receptor ligands as antiinflammatory drugs. Curr Top Med Chem 6:1375–1399

    PubMed  CAS  Google Scholar 

  • Antonioli L, Fornai M, Colucci R, Ghisu N, Da Settimo F, Natale G, Kastsiuchenka O, Duranti E, Virdis A, Vassalle C, La Motta C, Mugnaini L, Breschi MC, Blandizzi C, Del Taca M (2007) Inhibition of adenosine deaminase attenuates inflammation in experimental colitis. J Pharmacol Exp Ther 322:435–442

    Article  PubMed  CAS  Google Scholar 

  • Auchampach JA, Jin X, Wan TC, Caughey GH, Linden J (1997) Canine mast cell adenosine receptors: cloning and expression of the A3 receptor and evidence that degranulation is mediated by the A2B receptor. Mol Pharmacol 52:846–860

    PubMed  CAS  Google Scholar 

  • Bookser BC, Ugarkar BG, Matelich MC, Lemus RH, Allan M, Tsuchiya M, Nakane M, Nagahisa A, Wiesner JB, Erion MD (2005) Adenosine kinase inhibitors. 6. Synthesis, water solubility, and antinociceptive activity of 5-phenyl-7-(5-deoxy-beta-d-ribofuranosyl)pyrrolo[2,3-d]pyrimidines substituted at C4 with glycinamides and related compounds. J Med Chem 48:7808–7820

    Article  PubMed  CAS  Google Scholar 

  • Boughton-Smith NK, Deakin AM, Follenfant RL, Whittle BJ, Garland LG (1993) Role of oxygen radicals and arachidonic acid metabolites in the reverse passive Arthus reaction and carrageenin paw oedema in the rat. Br J Pharmacol 110:896–902

    PubMed  CAS  Google Scholar 

  • Boyer SH, Ugarkar BG, Solbach J, Kopcho J, Matelich MC, Ollis K, Gomez-Galeno JE, Mendonca R, Tsuchiya M, Nagahisa A, Nakane M, Wiesner JB, Erion MD (2005) Adenosine kinase inhibitors. 5. Synthesis, enzyme inhibition, and analgesic activity of diaryl-erythro-furanosyltubercidin analogues. J Med Chem 48:6430–6441

    Article  PubMed  CAS  Google Scholar 

  • Cadieux JS, Leclerc P, St-Onge M, Dussault AA, Laflamme C, Picard S, Ledent C, Borgeat P, Pouliot M (2005) Potentiation of neutrophil cyclooxygenase-2 by adenosine: an early anti-inflammatory signal. J Cell Sci 118:1437–1447

    Article  PubMed  CAS  Google Scholar 

  • Day YJ, Huang L, Ye H, Li L, Linden J, Okusa MD (2006) Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: the role of CD4+ T cells and IFN-gamma. J Immunol 176:3108–3114

    PubMed  CAS  Google Scholar 

  • Dixon AK, Gubitz AK, Sirinathsinghji DJ, Richardson PJ, Freeman TC (1996) Tissue distribution of adenosine receptor mRNAs in the rat. Br J Pharmacol 118:1461–1468

    PubMed  CAS  Google Scholar 

  • Dowd E, McQueen DS, Chessell IP, Humphrey PP (1998) Adenosine A1 receptor-mediated excitation of nociceptive afferents innervating the normal and arthritic rat knee joint. Br J Pharmacol 125:1267–1271

    Article  PubMed  CAS  Google Scholar 

  • Esquisatto LC, Costa SK, Camargo EA, Ribela MT, Brain SD, de Nucci G, Antunes E (2001) The plasma protein extravasation induced by adenosine and its analogues in the rat dorsal skin: evidence for the involvement of capsaicin sensitive primary afferent neurones and mast cells. Br J Pharmacol 134:108–115

    Article  PubMed  CAS  Google Scholar 

  • Feoktistov I, Biaggioni I (1996) Role of adenosine in asthma. Drug Dev Res 39:333–336

    Article  PubMed  CAS  Google Scholar 

  • Fiebich BL, Biber K, Gyufko K, Berger M, Bauer J, van Calker D (1996a) Adenosine A2b receptors mediate an increase in interleukin (IL)-6 mRNA and IL-6 protein synthesis in human astroglioma cells. J Neurochem 66:1426–1431

    Article  PubMed  CAS  Google Scholar 

  • Fiebich BL, Biber K, Lieb K, van Calker D, Berger M, Bauer J, Gebicke-Haerter PJ (1996b) Cyclooxygenase-2 expression in rat microglia is induced by adenosine A2a-receptors. Glia 18:152–160

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    PubMed  CAS  Google Scholar 

  • Hasko G, Cronstein BN (2004) Adenosine: an endogenous regulator of innate immunity. Trends Immunol 25:33–39

    Article  PubMed  CAS  Google Scholar 

  • Hockemeyer J, Burbiel JC, Muller CE (2004) Multigram-scale syntheses, stability, and photoreactions of A2A adenosine receptor antagonists with 8-styrylxanthine structure: potential drugs for Parkinson's disease. J Org Chem 69:3308–3318

    Article  PubMed  CAS  Google Scholar 

  • Honore P, Buritova J, Chapman V, Besson JM (1998) UP 202–56, an adenosine analogue, selectively acts via A1 receptors to significantly decrease noxiously-evoked spinal c-Fos protein expression. Pain 75:281–293

    Article  PubMed  CAS  Google Scholar 

  • Jacker HJ, Richter J (1975) Possibilities and limitations of the use of rat paw edemas as models of inflammation. 1. Review on edemas as models and their possible use. Pharmazie 30:417–422

    PubMed  CAS  Google Scholar 

  • Jacobson KA (1998) Adenosine A3 receptors: novel ligands and paradoxical effects. Trends Pharmacol Sci 19:184–191

    Article  PubMed  CAS  Google Scholar 

  • Jarvis MF, Yu H, McGaraughty S, Wismer CT, Mikusa J, Zhu C, Chu K, Kohlhaas K, Cowart M, Lee CH, Stewart AO, Cox BF, Polakowski J, Kowaluk EA (2002) Analgesic and anti-inflammatory effects of A-286501, a novel orally active adenosine kinase inhibitor. Pain 96:107–118

    Article  PubMed  CAS  Google Scholar 

  • Kalda A, Yu L, Oztas E, Chen JF (2006) Novel neuroprotection by caffeine and adenosine A(2A) receptor antagonists in animal models of Parkinson's disease. J Neurol Sci 248:9–15

    Article  PubMed  CAS  Google Scholar 

  • Karlsten R, Gordh T, Post C (1992) Local antinociceptive and hyperalgesic effects in the formalin test after peripheral administration of adenosine analogues in mice. Pharmacol Toxicol 70:434–438

    Article  PubMed  CAS  Google Scholar 

  • Kolachala V, Asamoah V, Wang L, Obertone TS, Ziegler TR, Merlin D, Sitaraman SV (2005) TNF-alpha upregulates adenosine 2b (A2b) receptor expression and signaling in intestinal epithelial cells: a basis for A2bR overexpression in colitis. Cell Mol Life Sci 62:2647–2657

    Article  PubMed  CAS  Google Scholar 

  • Konig M, Zimmer AM, Steiner H, Holmes PV, Crawley JN, Brownstein MJ, Zimmer A (1996) Pain responses, anxiety and aggression in mice deficient in pre-proenkephalin. Nature 383:535–538

    Article  PubMed  CAS  Google Scholar 

  • Kowaluk EA, Jarvis MF (2000) Therapeutic potential of adenosine kinase inhibitors. Expert Opin Investig Drugs 9:551–564

    Article  PubMed  CAS  Google Scholar 

  • Kowaluk EA, Kohlhaas KL, Bannon A, Gunther K, Lynch JJ 3rd, Jarvis MF (1999) Characterization of the effects of adenosine kinase inhibitors on acute thermal nociception in mice. Pharmacol Biochem Behav 63:83–91

    Article  PubMed  CAS  Google Scholar 

  • Kowaluk EA, Mikusa J, Wismer CT, Zhu CZ, Schweitzer E, Lynch JJ, Lee CH, Jiang M, Bhagwat SS, Gomtsyan A, McKie J, Cox BF, Polakowski J, Reinhart G, Williams M, Jarvis MF (2000) ABT-702 (4-amino-5-(3-bromophenyl)-7-(6-morpholino-pyridin- 3-yl)pyrido[2,3-d]pyrimidine), a novel orally effective adenosine kinase inhibitor with analgesic and anti-inflammatory properties. II. In vivo characterization in the rat. J Pharmacol Exp Ther 295:1165–1174

    PubMed  CAS  Google Scholar 

  • Kuno M, Seki N, Tsujimoto S, Nakanishi I, Kinoshita T, Nakamura K, Terasaka T, Nishio N, Sato A, Fujii T (2006) Anti-inflammatory activity of non-nucleoside adenosine deaminase inhibitor FR234938. Eur J Pharmacol 534:241–249

    Article  PubMed  CAS  Google Scholar 

  • Lappas CM, Sullivan GW, Linden J (2005) Adenosine A2A agonists in development for the treatment of inflammation. Expert Opin Investig Drugs 14:797–806

    Article  PubMed  CAS  Google Scholar 

  • Ledent C, Vaugeois JM, Schiffmann SN, Pedrazzini T, El Yacoubi M, Vanderhaeghen JJ, Costentin J, Heath JK, Vassart G, Parmentier M (1997) Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature 388:674–678

    Article  PubMed  CAS  Google Scholar 

  • Li X, Conklin D, Ma W, Zhu X, Eisenach JC (2002) Spinal noradrenergic activation mediates allodynia reduction from an allosteric adenosine modulator in a rat model of neuropathic pain. Pain 97:117–125

    Article  PubMed  CAS  Google Scholar 

  • Linden J (2001) Molecular approach to adenosine receptors: receptor-mediated mechanisms of tissue protection. Annu Rev Pharmacol Toxicol 41:775–787

    Article  PubMed  CAS  Google Scholar 

  • Livingston M, Heaney LG, Ennis M (2004) Adenosine, inflammation and asthma—a review. Inflamm Res 53:171–178

    Article  PubMed  CAS  Google Scholar 

  • Lukashev D, Ohta A, Apasov S, Chen JF, Sitkovsky M (2004) Cutting edge: Physiologic attenuation of proinflammatory transcription by the Gs protein-coupled A2A adenosine receptor in vivo. J Immunol 173:21–24

    PubMed  CAS  Google Scholar 

  • Marx D, Ezeamuzie CI, Nieber K, Szelenyi I (2001) Therapy of bronchial asthma with adenosine receptor agonists or antagonists. Drug News Perspect 14:89–100

    PubMed  CAS  Google Scholar 

  • McGaraughty S, Cowart M, Jarvis MF (2001) Recent developments in the discovery of novel adenosine kinase inhibitors: mechanism of action and therapeutic potential. CNS Drug Rev 7:415–432

    Article  PubMed  CAS  Google Scholar 

  • McGaraughty S, Cowart M, Jarvis MF, Berman RF (2005) Anticonvulsant and antinociceptive actions of novel adenosine kinase inhibitors. Curr Top Med Chem 5:43–58

    Article  PubMed  CAS  Google Scholar 

  • Muller CE (2003) Medicinal chemistry of adenosine A3 receptor ligands. Curr Top Med Chem 3:445–462

    Article  PubMed  CAS  Google Scholar 

  • Muller CE, Ferre S (2007) Blocking striatal adenosine A2A receptors: a new strategy for basal ganglia disorders. Rec Patents CNS Drug Discov 2:1–21

    Google Scholar 

  • Mustafa SJ, Nadeem A, Fan M, Zhong H, Belardinelli L, Zeng D (2007) Effect of a specific and selective A(2B) adenosine receptor antagonist on adenosine agonist AMP and allergen-induced airway responsiveness and cellular influx in a mouse model of asthma. J Pharmacol Exp Ther 320:1246–1251

    Article  PubMed  CAS  Google Scholar 

  • Nadeem A, Obiefuna PC, Wilson CN, Mustafa SJ (2006) Adenosine A1 receptor antagonist versus montelukast on airway reactivity and inflammation. Eur J Pharmacol 551:116–124

    Article  PubMed  CAS  Google Scholar 

  • Nadeem A, Fan M, Ansari HR, Ledent C, Mustafa SJ (2007) Enhanced airway reactivity and inflammation in A2A adenosine receptor deficient allergic mice. Am J Physiol Lung Cell Mol Physiol 292(6):L1335–L1344

    Article  PubMed  CAS  Google Scholar 

  • Nakamura I, Ohta Y, Kemmotsu O (1997) Characterization of adenosine receptors mediating spinal sensory transmission related to nociceptive information in the rat. Anesthesiology 87:577–584

    Article  PubMed  CAS  Google Scholar 

  • Odashima M, Bamias G, Rivera-Nieves J, Linden J, Nast CC, Moskaluk CA, Marini M, Sugawara K, Kozaiwa K, Otaka M, Watanabe S, Cominelli F (2005) Activation of A2A adenosine receptor attenuates intestinal inflammation in animal models of inflammatory bowel disease. Gastroenterology 129:26–33

    Article  PubMed  CAS  Google Scholar 

  • Ohta A, Sitkovsky M (2001) Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414:916–920

    Article  PubMed  CAS  Google Scholar 

  • Ongini E, Fredholm BB (1996) Pharmacology of adenosine A2A receptors. Trends Pharmacol Sci 17:364–372

    Article  PubMed  CAS  Google Scholar 

  • Ozola V, Thorand M, Diekmann M, Qurishi R, Schumacher B, Jacobson KA, Müller CE (2003) 2-Phenylimidazo[2,1-i]purin-5-ones: structure–activity relationships and characterization of potent and selective inverse agonists at human A3 adenosine receptors. Bioorg Med Chem 11:347–356

    Article  PubMed  CAS  Google Scholar 

  • Poon A, Sawynok J (1998) Antinociception by adenosine analogs and inhibitors of adenosine metabolism in an inflammatory thermal hyperalgesia model in the rat. Pain 74:235–245

    Article  PubMed  CAS  Google Scholar 

  • Poon A, Sawynok J (1999) Antinociceptive and anti-inflammatory properties of an adenosine kinase inhibitor and an adenosine deaminase inhibitor. Eur J Pharmacol 384:123–138

    Article  PubMed  CAS  Google Scholar 

  • Posadas I, Bucci M, Roviezzo F, Rossi A, Parente L, Sautebin L, Cirino G (2004) Carrageenan-induced mouse paw oedema is biphasic, age-weight dependent and displays differential nitric oxide cyclooxygenase-2 expression. Br J Pharmacol 142:331–338

    Article  PubMed  CAS  Google Scholar 

  • Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    PubMed  CAS  Google Scholar 

  • Ramkumar V, Stiles GL, Beaven MA, Ali H (1993) The A3 adenosine receptor is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. J Biol Chem 268:16887–16890

    PubMed  CAS  Google Scholar 

  • Ramkumar V, Hallam DM, Nie Z (2001) Adenosine, oxidative stress and cytoprotection. Jpn J Pharmacol 86:265–274

    Article  PubMed  CAS  Google Scholar 

  • Ramos-Zepeda G, Schroder W, Rosenow S, Herrero JF (2004) Spinal vs. supraspinal antinociceptive activity of the adenosine A(1) receptor agonist cyclopentyl-adenosine in rats with inflammation. Eur J Pharmacol 499:247–256

    Article  PubMed  CAS  Google Scholar 

  • Reeve AJ, Dickenson AH (1995) The roles of spinal adenosine receptors in the control of acute and more persistent nociceptive responses of dorsal horn neurones in the anaesthetized rat. Br J Pharmacol 116:2221–2228

    PubMed  CAS  Google Scholar 

  • Rosi S, McGann K, Hauss-Wegrzyniak B, Wenk GL (2003) The influence of brain inflammation upon neuronal adenosine A2B receptors. J Neurochem 86:220–227

    Article  PubMed  CAS  Google Scholar 

  • Ryzhov SV, Zaynagetdinov R, Goldstein AE, Novitskiy SV, Blackburn MR, Biaggioni I, Feoktistov I (2007) Effect of A2B adenosine receptor gene ablation on adenosine-dependent regulation of pro-inflammatory cytokines. J Pharmacol Exp Ther (in press)

  • Salmon JE, Cronstein BN (1990) Fc gamma receptor-mediated functions in neutrophils are modulated by adenosine receptor occupancy. A1 receptors are stimulatory and A2 receptors are inhibitory. J Immunol 145:2235–2240

    PubMed  CAS  Google Scholar 

  • Sawynok J (1998) Adenosine receptor activation and nociception. Eur J Pharmacol 347:1–11

    Article  PubMed  CAS  Google Scholar 

  • Sawynok J, Zarrindast MR, Reid AR, Doak GJ (1997) Adenosine A3 receptor activation produces nociceptive behaviour and edema by release of histamine and 5-hydroxytryptamine. Eur J Pharmacol 333:1–7

    Article  PubMed  CAS  Google Scholar 

  • Sawynok J, Reid A, Liu XJ (1999) Acute paw oedema induced by local injection of adenosine A(1), A(2) and A(3) receptor agonists. Eur J Pharmacol 386:253–261

    Article  PubMed  CAS  Google Scholar 

  • Sawynok J, Reid A, Liu XJ (2000) Involvement of mast cells, sensory afferents and sympathetic mechanisms in paw oedema induced by adenosine A(1) and A(2B/3) receptor agonists. Eur J Pharmacol 395:47–50

    Article  PubMed  CAS  Google Scholar 

  • Sullivan GW (2003) Adenosine A2A receptor agonists as anti-inflammatory agents. Curr Opin Investig Drugs 4:1313–1319

    PubMed  CAS  Google Scholar 

  • Sun CX, Zhong H, Mohsenin A, Morschl E, Chunn JL, Molina JG, Belardinelli L, Zeng D, Blackburn MR (2006) Role of A2B adenosine receptor signaling in adenosine-dependent pulmonary inflammation and injury. J Clin Invest 116:2173–2182

    Article  PubMed  CAS  Google Scholar 

  • Terai T, Kusunoki T, Kita Y, Yoshida K, Akahane A, Shiokawa Y, Kohno Y, Horiai H, Mori J, Mine Y, Kohsaka M (1996) General pharmacology of the new non-xanthine adenosine A1 receptor antagonist (+)-(R)-[(E)-3-(2-phenylpyrazolo[1,5-a]pyridin-3-yl)acryloyl]-2-piperidine ethanol. Arzneimittelforschung 46:185–191

    PubMed  CAS  Google Scholar 

  • Thiel M, Caldwell CC, Sitkovsky MV (2003) The critical role of adenosine A2A receptors in downregulation of inflammation and immunity in the pathogenesis of infectious diseases. Microbes Infect 5:515–526

    Article  PubMed  CAS  Google Scholar 

  • Vinegar R, Truax JF, Selph JL (1976) Quantitative studies of the pathway to acute carrageenan inflammation. Fed Proc 35:2447–2456

    PubMed  CAS  Google Scholar 

  • Weyler S, Fulle F, Diekmann M, Schumacher B, Hinz S, Klotz KN, Muller CE (2006) Improving potency, selectivity, and water solubility of adenosine A1 receptor antagonists: xanthines modified at position 3 and related pyrimido[1,2,3-cd]purinediones. ChemMedChem 1:891–902

    Article  PubMed  CAS  Google Scholar 

  • Wu WP, Hao JX, Halldner-Henriksson L, Xu XJ, Jacobson MA, Wiesenfeld-Hallin Z, Fredholm BB (2002) Decreased inflammatory pain due to reduced carrageenan-induced inflammation in mice lacking adenosine A3 receptors. Neuroscience 114:523–527

    Article  PubMed  CAS  Google Scholar 

  • Wu WP, Hao JX, Halldner L, Lovdahl C, DeLander GE, Wiesenfeld-Hallin Z, Fredholm BB, Xu XJ (2005) Increased nociceptive response in mice lacking the adenosine A1 receptor. Pain 113:395–404

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Muller CE (2004) Preparation, properties, reactions, and adenosine receptor affinities of sulfophenylxanthine nitrophenyl esters: toward the development of sulfonic acid prodrugs with peroral bioavailability. J Med Chem 47:1031–1043

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Day YJ, Toufektsian MC, Ramos SI, Marshall M, Wang XQ, French BA, Linden J (2005) Infarct-sparing effect of A2A-adenosine receptor activation is due primarily to its action on lymphocytes. Circulation 111:2190–2197

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Zhang Y, Nguyen HG, Koupenova M, Chauhan AK, Makitalo M, Jones MR, St Hilaire C, Seldin DC, Toselli P, Lamperti E, Schreiber BM, Gavras H, Wagner DD, Ravid K (2006) The A2B adenosine receptor protects against inflammation and excessive vascular adhesion. J Clin Invest 116:1913–1923

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Soohoo D, Soelaiman S, Kalla R, Zablocki J, Chu N, Leung K, Yao L, Diamond I, Belardinelli L, Shryock JC (2007) Characterization of the potency, selectivity, and pharmacokinetic profile for six adenosine A2A receptor antagonists. Naunyn Schmiedebergs Arch Pharmacol 375:133–144

    Article  PubMed  CAS  Google Scholar 

  • Young HW, Molina JG, Dimina D, Zhong H, Jacobson M, Chan LN, Chan TS, Lee JJ, Blackburn MR (2004) A3 adenosine receptor signaling contributes to airway inflammation and mucus production in adenosine deaminase-deficient mice. J Immunol 173:1380–1389

    PubMed  CAS  Google Scholar 

  • Zablocki J, Elzein E, Kalla R (2006) A2B adenosine receptor antagonists and their potential indications.. Exp Opin Ther Patents 16:1347–1357

    Article  CAS  Google Scholar 

  • Zhong H, Wu Y, Belardinelli L, Zeng D (2006) A2B adenosine receptors induce IL-19 from bronchial epithelial cells, resulting in TNF-alpha increase. Am J Respir Cell Mol Biol 35:587–592

    Article  PubMed  CAS  Google Scholar 

  • Zimmer A, Zimmer AM, Hohmann AG, Herkenham M, Bonner TI (1999) Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc Natl Acad Sci U S A 96:5780–5785

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the laboratory for suggestions on the experiments and the manuscript. This work was supported by grants from the Deutsche Forschungsgemeinschaft (FOR425), the State of North-Rhine-Westfalia (Innovationsprogramm Forschung), and the BONFOR Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andras Bilkei-Gorzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilkei-Gorzo, A., Abo-Salem, O.M., Hayallah, A.M. et al. Adenosine receptor subtype-selective antagonists in inflammation and hyperalgesia. Naunyn-Schmied Arch Pharmacol 377, 65–76 (2008). https://doi.org/10.1007/s00210-007-0252-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-007-0252-9

Keywords

Navigation