Skip to main content
Log in

Geometric flows and Strominger systems

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

A geometric flow on (2, 2)-forms is introduced which preserves the balanced condition of metrics, and whose stationary points satisfy the anomaly equation in Strominger systems. The existence of solutions for a short time is established, using Hamilton’s version of the Nash–Moser implicit function theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. The usual balanced condition for a Hermitian metric \(\omega \) in dimension n is \(d\omega ^{n-1}=0\). For simplicity, we use the same terminology for the slight modification used in (2.5).

  2. It has recently been brought to our attention that the same system of equations for supersymmetric compactifications was independently proposed by Hull [19, 20].

References

  1. Andreas, B., Garcia-Fernandez, M.: Heterotic non-Kahler geometries via polystable bundles on Calabi–Yau threefolds. J. Geom. Phys. 62(2), 183–188 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andreas, B., Garcia-Fernandez, M.: Solutions of the Strominger system via stable bundles on Calabi–Yau threefolds. Commun. Math. Phys. 315, 153–168 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Becker, K., Becker, M., Fu, J.X., Tseng, L.S., Yau, S.T.: Anomaly cancellation and smooth non-Kahler solutions in heterotic string theory. Nucl. Phys. B 751(1), 108–128 (2006)

    Article  MATH  Google Scholar 

  4. Carlevaro, L., Israel, D.: Heterotic resolved conifolds with torsion, from supergravity to CFT. J. High Energy Phys. 1, 1–57 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Dasgupta, K., Rajesh, G., Sethi, S.S.: M-theory, orientifolds and G-flux. J. High Energy Phys. 1999(08), 023 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Donaldson, S.: Infinite determinants, stable bundles, and curvature. Duke Math. J. 54, 231–247 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fei, T.: A construction of non-Kähler Calabi–Yau manifolds and new solutions to the Strominger system. Adv. Math. 302, 529–550 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fei, T.: Some torsional local models of heterotic strings, preprint, arXiv:1508.05566

  9. Fei, T., Yau, S.T.: Invariant solutions to the Strominger system on complex Lie groups and their quotients. Commun. Math. Phys. 338(3), 1–13 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fernandez, M., Ivanov, S., Ugarte, L., Vassilev, D.: Non-Kahler heterotic string solutions with non-zero fluxes and non-constant dilaton. J. High Energy Phys. 6, 1–23 (2014)

    MATH  Google Scholar 

  11. Fernandez, M., Ivanov, S., Ugarte, L., Villacampa, R.: Non-Kahler heterotic string compactifications with non-zero fluxes and constant dilaton. Commun. Math. Phys. 288, 677–697 (2009)

    Article  MATH  Google Scholar 

  12. Fu, J.X., Tseng, L.S., Yau, S.T.: Local heterotic torsional models. Commun. Math. Phys. 289, 1151–1169 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fu, J.X., Wang, Z.Z., Wu, D.M.: Form-type equations on Kähler manifolds of nonnegative orthogonal bisectional curvature. Calc. Var. Partial Differ. Equ. 52(1–2), 327–344 (2015)

    Article  MATH  Google Scholar 

  14. Fu, J.X., Yau, S.T.: The theory of superstring with flux on non-Kahler manifolds and the complex Monge–Ampere equation. J. Differ. Geom. 78(3), 369–428 (2008)

    Article  MATH  Google Scholar 

  15. Fu, J.X., Yau, S.T.: A Monge–Ampère type equation motivated by string theory. Commun. Anal. Geom. 15(1), 29–76 (2007)

    Article  MATH  Google Scholar 

  16. Goldstein, E., Prokushkin, S.: Geometric model for complex non-Kähler manifolds with SU(3) structure. Commun. Math. Phys. 251(1), 65–78 (2004)

    Article  MATH  Google Scholar 

  17. Grantcharov, G.: Geometry of compact complex homogeneous spaces with vanishing first Chern class. Adv. Math. 226, 3136–3159 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17, 255–306 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hull, C.: Superstring compactifications with rorsion and space-time supersymmetry. In: D’Auria, R., Fre, P. (eds.) Proceedings of the First Torino Meeting on Superunification and Extra Dimensions. World Scientific, Singapore (1986)

    Google Scholar 

  20. Hull, C.: Compactifications of the heterotic superstring. Phys. Lett. B 178(4), 357–365 (1986)

    Article  MathSciNet  Google Scholar 

  21. Li, J., Yau, S.T.: The existence of supersymmetric string theorey with torsion. J. Differ. Geom. 70(1), 143–181 (2005)

    Article  MATH  Google Scholar 

  22. Michelsohn, M.L.: On the existence of special metrics in complex geometry. Acta Math. 149(3–4), 261–295 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Otal, A., Ugarte, L., Villacampa, R.: Invariant solutions to the Strominger system and the heterotic equations of motion on solvmanifolds, preprint arXiv:1604.02851

  24. Phong, D.H., Picard, S., Zhang, X.W.: On estimates for the Fu–Yau generalization of a Strominger system. J. Reine Angew. Math, arXiv:1507.08193 (to appear)

  25. Phong, D.H., Picard, S., Zhang, X.W.: The Fu–Yau equation with negative slope parameter. Invent. Math, arXiv:1602.08838 (to appear)

  26. Phong, D.H., Picard, S., Zhang, X.W.: Anomaly flows, arXiv:1610.02739

  27. Phong, D.H., Picard, S., Zhang, X.W.: The anomaly flow and the Fu–Yau equation, arXiv:1610.02740

  28. Popovici, D.: Aeppli cohomology classes associated with Gauduchon metrics on compact complex manifolds. Bulletin de la Société Mathématique de France 143(4), 763–800

  29. Siu, Y.-T.: Lectures on Hermitian–Einstein metrics for stable bundles and Kähler- Einstein metrics, DMV Seminar, 8. Birkhäuser Verlag, Basel (1987)

    Book  MATH  Google Scholar 

  30. Strominger, A.: Superstrings with torsion. Nucl. Phys. B 274(2), 253–284 (1986)

    Article  MathSciNet  Google Scholar 

  31. Tosatti, V., Weinkove, B.: The Monge–Ampère equation for \((n-1)\)-plurisubharmonic functions on a compact Kähler manifold. J. Am. Math. Soc. 30(2), 311–346 (2017)

    Article  MATH  Google Scholar 

  32. Ugarte, L., Villacampa, R.: Non-nilpotent complex geometry of nilmanifolds and heterotic supersymmetry. Asian J. Math. 18(2), 229–246 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Uhlenbeck, K., Yau, S.T.: On the existence of Hermitian Yang–Mills connections on stable vector bundles. Commun. Pure Appl. Math. 39, 257–293 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I. Commun. Pure Appl. Math. 31(3), 339–411 (1978)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duong H. Phong.

Additional information

Work supported in part by the National Science Foundation under Grant DMS-12-66033 and DMS-1308136.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phong, D.H., Picard, S. & Zhang, X. Geometric flows and Strominger systems. Math. Z. 288, 101–113 (2018). https://doi.org/10.1007/s00209-017-1879-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-1879-y

Keywords

Navigation