Skip to main content
Log in

Quantum hyperdeterminants and hyper-Pfaffians

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The notion of generalized quantum monoids is introduced. It is proved that the quantum coordinate ring of the monoid can be lifted to a quantum hyper-algebra, in which the quantum determinant and quantum Pfaffian are sent to the quantum hyperdeterminant and quantum hyper-Pfaffian respectively. The quantum hyperdeterminant in even dimension is shown to be a q-analog of Cayley’s first hyperdeterminant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barvinok, A.I.: New algorithms for linear k-matroid intersection and matroid k-parity problems. Math. Program. 69, 449–470 (1995)

    MATH  MathSciNet  Google Scholar 

  2. Cayley, A.: On the theory of determinants. Trans. Cambridge Phil. Soc. 8, 1–16 (1843)

    MATH  Google Scholar 

  3. Faddeev, L.D., Reshetikhin, N.Y., Tacktajan, L.A.: Quantization of Lie groups and Lie algebras. In: Algebraic Analysis, vol. I, pp. 129–139, Academic Press, Boston, MA (1988)

  4. Gelfand, I.M., Kapronov, M.M., Zelevinsky, A.V.: Discriminants, Resultants and Multidimensional Determinants. Birkhäuser, Boston (1994)

    Book  MATH  Google Scholar 

  5. Hashimoto, M., Hayashi, T.: Quantum multilinear algebra. Tohoku Math. J. 44(2), 471–521 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Jimbo, M.: A q-analogue of \(U(gl(N+1))\), Hecke algebra, and the Yang-Baxter equation. Lett. Math. Phys. 11, 247–252 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  7. Jing, N., Ray, R.: Zonal polynomials and quantum antisymmetric matrices. Bull. Inst. Math. Acad. Sinica. (N.S.) 7, 1–31 (2012)

    MATH  MathSciNet  Google Scholar 

  8. Jing, N., Zhang, J.: Quantum Pfaffians and hyper-Pfaffians. Adv. Math. 265, 336–361 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kassel, C.: Quantum Groups, GTM 155. Springer, New York (1995)

    Book  Google Scholar 

  10. Krob, D., Leclerc, B.: Minor identities for quasi-determinants and quantum determinants. Commun. Math. Phys. 169, 1–23 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lecat, M.: Leçon sur la théorie des déterminants à n dimensions avec applications à lalgèbre, à la géométrie. AD. Hoste, Gand (1910)

  12. Lecat, M.: Coup d’oeil sur les applications des déterminants supérieurs. Ceuterick, Louvain (1929)

    MATH  Google Scholar 

  13. Luque, J.-G., Thibon, J.Y.: Pfaffian and Hafnian identities in shuffle algebras. Adv. Appl. Math. 29, 620–646 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Matsumoto, S.: Hyperdeterminantal expressions for Jack functions of rectangular shapes. J. Algebra 320, 612–632 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Manin, Yu. I.: Quantum Groups and Noncommutative Geometry. Publications du Centre de Recherches Mathématiques, Université de Montréal, Montréal (1988)

  16. Manin, Yu. I.: Notes on quantum groups and quantum de Rham complexes. Teoret. Mat. Fiz. 92 (1992), 425–450; translation in Theoret. and Math. Phys. 92 (1992), 997–1023 (1993)

  17. Noumi, M., Yamada, H., Mimachi, K.: Finite-dimensional representations of the quantum group \({\rm GL}_q(n;C)\) and the zonal spherical functions on \(U_q(n-1)\backslash U_q(n)\). Jpn. J. Math. (N.S.) 19, 31–80 (1993)

    Article  MATH  Google Scholar 

  18. Redelmeier, D.: Higherpfaffians in algebraic combinatorics. Ph.D thesis, University of Waterloo (2006)

  19. Rice, R.H.: Compound of Cayley products of determinants of higher class. J. Math. Phys. 6, 33–38 (1929)

    Article  MATH  Google Scholar 

  20. Rice, R.H.: Introduction to higher determinants. J. Math. Phys. 9, 47–70 (1930)

    Article  MATH  Google Scholar 

  21. Sokolov, N.P.: Special Matrices and Their Applications. Gosudarstv, Izdat. Fiz. Math. Lit, Moscow (1960)

    Google Scholar 

  22. Sokolov, N.P.: Introduction to the Theory of Multidimensional Matrices. Nukova Dumka, Kiev (1972)

    Google Scholar 

  23. Strickland, E.: Classical invariant theory for the quantum symplectic group. Adv. Math. 123, 78–90 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Taft, E., Towber, J.: Quantum deformation of flag schemes and Grassmann schemes. I. A \(q\)-deformation of the shape-algebra for \({\rm GL}(n)\). J. Algebra 142, 1–36 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by NSFC Grant Nos. 11271138 and 11531004, and Simons Foundation 198129. The second author thanks the hospitality of North Carolina State University and support from China Scholarship Council during the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, N., Zhang, J. Quantum hyperdeterminants and hyper-Pfaffians. Math. Z. 287, 897–914 (2017). https://doi.org/10.1007/s00209-017-1850-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-1850-y

Keywords

Mathematics Subject Classification

Navigation