Skip to main content
Log in

Uniform global well-posedness of the Navier–Stokes–Coriolis system in a new critical space

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We prove global well-posedness for the Navier–Stokes–Coriolis system (NSC) in a critical space whose definition is based on Fourier transform, namely the Fourier–Besov–Morrey space \(\mathcal {FN}_{1,\mu ,\infty }^{\mu -1}\) with \(0<\mu <3\). The smallness condition on the initial data is uniform with respect to the angular velocity \(\omega \). Our result provides a new class for the uniform global solvability of (NSC) and covers some previous ones. For \(\mu =0\), (NSC) is ill-posedness in \(\mathcal {FN}_{1,\mu ,\infty }^{\mu -1}\) which shows the optimality of the results with respect to the space parameter \(\mu >0\). The lack of Hausdorff–Young inequality in Morrey spaces suggests that there are no inclusions between \(\mathcal {FN}_{1,\mu ,\infty }^{\mu -1}\) and the largest previously known existence classes of Kozono–Yamazaki (Besov–Morrey space) and Koch–Tataru (\(\textit{BMO}^{-1}\)) for Navier–Stokes equations (3DNS). So, taking in particular \(\omega =0\), we obtain a critical initial data class that seems to be new for global existence of solutions of (3DNS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Babin, A., Mahalov, A., Nicolaenko, B.: Global regularity of 3D rotating Navier–Stokes equations for resonant domains. Indiana Univ. Math. J. 48(3), 1133–1176 (1999)

    MATH  MathSciNet  Google Scholar 

  2. Babin, A., Mahalov, A., Nicolaenko, B.: 3D Navier–Stokes and Euler equations with initial data characterized by uniformly large vorticity. Indiana Univ. Math. J. 50, 1–35 (2001). (special issue)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barraza, O.A.: Self-similar solutions in weak \(L^{p}\)-spaces of the Navier–Stokes equations. Rev. Mat. Iberoam. 12(2), 411–439 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bony, J.M.: Calcul symbolique et propagation des singularitiés pour les équations aux dérivées partielles nonlinéaires. Ann. de l’Ecole Norm. Sup. 14, 209–246 (1981)

    Article  MATH  Google Scholar 

  5. Bourgain, J., Pavlovic, N.: Ill-posedness of the Navier–Stokes equations in a critical space in 3D. J. Funct. Anal. 255, 2233–2247 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cannone, M.: A generalization of a theorem by Kato on Navier–Stokes equations. Rev. Mat. Iberoam. 13(3), 515–541 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cannone, M., Wu, G.: Global well-posedness for Navier–Stokes equations in critical Fourier–Herz spaces. Nonlinear Anal. 75(9), 3754–3760 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chemin, J., Desjardins, B., Gallagher, I., Grenier, E.: Mathematical Geophysics. An Introduction to Rotating Fluids and the Navier–Stokes Equations. Oxford University Press, New York (2006)

    MATH  Google Scholar 

  9. Chen, Q., Miao, C., Zhang, Z.: Global well-posedness for the 3D rotating Navier–Stokes equations with highly oscillating initial data. Pac. J. Math. 262(2), 263–283 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. de Almeida, M.F., Ferreira, L.C.F.: On the local solvability in Morrey spaces of the Navier–Stokes equations in a rotating frame. J. Math. Anal. Appl. 405(2), 362–372 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ferreira, L.C.F., Lima, L.S.M.: Self-similar solutions for active scalar equations in Fourier–Besov–Morrey spaces. Monatsh. Math. 175(4), 491–509 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  12. Foiaş, C.: Statistical study of Navier–Stokes equations. I. Rend. Sem. Mat. Univ. Padova 48, 219–348 (1972)

    MATH  MathSciNet  Google Scholar 

  13. Foiaş, C.: Statistical study of Navier–Stokes equations. II. Rend. Sem. Mat. Univ. Padova 49, 9–123 (1973)

    MATH  Google Scholar 

  14. Fujita, H., Kato, T.: On the Navier–Stokes initial value problem I. Arch. Ration. Mech. Anal. 16, 269–315 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  15. Giga, Y., Inui, K., Mahalov, A., and Matsui, S.: Uniform local solvability for the Navier–Stokes equations with the Coriolis force. In: Kyoto Conference on the Navier–Stokes Equations and their Applications, pp. 187–198. RIMS Kokyuroku Bessatsu B1 Research Institute Mathematical Sciences (RIMS), Kyoto (2007)

  16. Giga, Y., Inui, K., Mahalov, A., Matsui, S.: Navier–Stokes equations in a rotating frame in \(\mathbb{R}^{3}\) with initial data nondecreasing at infinity. Hokkaido Math. J. 35(2), 321–364 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Giga, Y., Inui, K., Mahalov, A., Saal, J.: Global solvability of the Navier–Stokes equations in spaces based on sum-closed frequency sets. Adv. Differ. Equ. 12(7), 721–736 (2007)

    MATH  MathSciNet  Google Scholar 

  18. Giga, Y., Inui, K., Mahalov, A., Saal, J.: Uniform global solvability of the rotation Navier–Stokes equations for nondecaying initial data. Indiana Univ. Math J. 57(6), 2775–2791 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Giga, Y., Miyakawa, T.: Navier–Stokes flow in \(\mathbb{R}^{3}\) with measures as initial vorticity and Morrey spaces. Commun. Part. Differ. Equ. 14(5), 577–618 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hieber, M., Sawada, O.: The Navier–Stokes equations in \(\mathbb{R}^{n}\) with linearly growing initial data. Arch. Ration. Mech. Anal. 175(2), 269–285 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hieber, M., Shibata, Y.: The Fujita–Kato approach to the Navier–Stokes equations in the rotational framework. Math. Z. 265(2), 481–491 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Iwabuchi, T.: Global well-posedness for Keller–Segel system in Besov type spaces. J. Math. Anal. Appl. 379, 930–948 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Iwabuchi, T., Mahalov, A., Takada, R.: Global solutions for the incompressible rotating stably stratified fluids. Math. Nachr. (2016). doi:10.1002/mana.201500385

    MATH  Google Scholar 

  24. Iwabuchi, T., Takada, R.: Global solutions for the Navier–Stokes equations in the rotational framework. Math. Ann. 357(2), 727–741 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  25. Iwabuchi, T., Takada, R.: Global well-posedness and ill-posedness for the Navier–Stokes equations with the Coriolis force in function spaces of Besov type. J. Funct. Anal. 267(5), 1321–1337 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kato, T.: Strong \(L^{p}\)-solutions of the Navier–Stokes equation in \(\mathbb{R}^{m}\), with applications to weak solutions. Math. Z. 187(4), 471–480 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kato, T.: Strong solutions of the Navier–Stokes equations in Morrey spaces. Bol. Soc. Bras. Math. 22(2), 127–155 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. Koch, H., Tataru, D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157(1), 22–35 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Konieczny, P., Yoneda, T.: On dispersive effect of the Coriolis force for the stationary Navier–Stokes equations. J. Differ. Equ. 250(10), 3859–3873 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier–Stokes equation with distributions in new function spaces as initial data. Commun. Part. Differ. Equ. 19(5–6), 959–1014 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  31. Lei, Z., Lin, F.: Global mild solutions of Navier–Stokes equations. Commun. Pure Appl. Math. 64(9), 1297–1304 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. Lemarié-Rieusset, P.G.: Recent developments in the Navier-Stokes problem. Chapman & Hall/CRC Research Notes in Mathematics, vol. 431. Chapman & Hall/CRC, Boca Raton (2002)

  33. Lewis, J.E.: The initial-boundary value problem for the Navier–Stokes equations with data in \(L^{p}\). Indiana Univ. Math. J. 22, 739–761 (1972/73)

  34. Makhalov, A.S., Nikolaenko, V.P.: Global solvability of three-dimensional Navier–Stokes equations with uniformly high initial vorticity. Russ. Math. Surv. 58(2), 287–318 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  35. Mazzucato, A.L.: Besov–Morrey spaces: function space theory and applications to non-linear PDE. Trans. Am. Math. Soc. 355(4), 1297–1364 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  36. Peetre, J.: On the theory of \(L_{p,\lambda }\) spaces. J. Funct. Anal. 4, 71–87 (1969)

    Article  Google Scholar 

  37. Sawada, O.: The Navier–Stokes flow with linearly growing initial velocity in the whole space. Bol. Soc. Parana. Mat. (3) 22(2), 75–96 (2004)

    MATH  MathSciNet  Google Scholar 

  38. Taylor, M.E.: Analysis on Morrey spaces and applications to Navier–Stokes and other evolution equations. Commun. Part. Differ. Equ. 17(9–10), 1407–1456 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  39. Wang, B.: ill-posedness for the Navier–Stokes equations in critical Besov spaces \(\dot{B}_{\infty, q}^{-1}\). Adv. Math. 268, 350–372 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  40. Yamazaki, M.: The Navier–Stokes equations in the weak-\(L^n\) space with time-dependent external force. Math. Ann. 317(4), 635–675 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  41. Yoneda, T.: Ill-posedness of the 3D-Navier–Stokes equations in a generalized Besov space near \(BMO^{-1}\). J. Funct. Anal. 258, 3376–3387 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas C. F. Ferreira.

Additional information

Dedicated to Carlos Dilson (Dinho), in memoriam.

L. Ferreira was supported by FAPESP and CNPQ, Brazil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, M.F.d., Ferreira, L.C.F. & Lima, L.S.M. Uniform global well-posedness of the Navier–Stokes–Coriolis system in a new critical space. Math. Z. 287, 735–750 (2017). https://doi.org/10.1007/s00209-017-1843-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-1843-x

Keywords

Mathematics Subject Classification

Navigation