Skip to main content
Log in

Dual braid monoids, Mikado braids and positivity in Hecke algebras

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study the rational permutation braids, that is the elements of an Artin-Tits group of spherical type which can be written \(x^{-1} y\) where x and y are prefixes of the Garside element of the braid monoid. We give a geometric characterization of these braids in type \(A_n\) and \(B_n\) and then show that in spherical types different from \(D_n\) the simple elements of the dual braid monoid (for arbitrary choice of Coxeter element) embedded in the braid group are rational permutation braids (we conjecture this to hold also in type \(D_n\)). This property implies positivity properties of the polynomials arising in the linear expansion of their images in the Iwahori-Hecke algebra when expressed in the Kazhdan-Lusztig basis. In type \(A_n\), it implies positivity properties of their images in the Temperley-Lieb algebra when expressed in the diagram basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The authors thank Matthew Dyer for pointing out this fact to the second author.

References

  1. Allcock, D.: Braid pictures for Artin groups. Trans. Am. Math. Soc. 354, 345–3474 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Armstrong, D.: Generalized noncrossing partitions and combinatorics of Coxeter groups. Memoirs of the American Mathematical Society, vol. 202, no. 949 (2009)

  3. Baumeister, B., Dyer, M., Stump, C., Wegener, P.: A note on the transitive Hurwitz action on decompositions of parabolic Coxeter elements. Proc. Am. Math. Soc., Ser. B 1, 149–154 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bessis, D.: The dual braid monoid. Ann. Sci. École Normale Supérieure 36, 647–683 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bessis, D., Digne, F., Michel, J.: Springer theory in braid groups and the Birman-Ko-Lee monoid. Pacific J. Math. 205, 287–309 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Birman, J., Ko, K.H., Lee, S.J.: A new approach to the word and conjugacy problems in the Braid groups. Adv. Math. 139, 322–353 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourbaki, N.: Groupes et algèbres de Lie, chapitres 4,5 et 6, Masson (1981)

  8. Brieskorn, E., Saito, K.: Artin-Gruppen und Coxeter-Gruppen. Invent. Math. 17, 245–271 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brady, N., McCammond, J., Mühlherr, B., Neumann, W.: Rigidity of Coxeter groups and Artin groups. Geom. Dedic. 94, 91–109 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brady, T., Watt, C.: \(K(\pi, 1)\)’s for Artin groups of finite type. Geom. Dedic. 94, 225–230 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brady, T., Watt, C.: Noncrossing partitions lattices in finite real reflection groups. Trans. Am. Math. Soc. 360, 1983–2005 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Broué, M., Michel, J.: Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne-Lusztig associées. Prog. Math. 141, 73–139 (1997)

    Google Scholar 

  13. Carlitz, L., Scoville, R., Vaughan, T.: Enumeration of pairs of permutations and sequences. Bull. Am. Math. Soc. 80, 881–884 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dehornoy, P.: Three-dimensional realizations of braids. J. Lond. Math. Soc. 60, 108–132 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dehornoy, P., Digne, F., Krammer, D., Godelle, E., Michel, J.: Foundations of Garside theory. Tracts in Mathematics, vol. 22, pp. 690. European Mathematical Society (2015)

  16. Dehornoy, P., Paris, L.: Gaussian groups and Garside groups, two generalizations of Artin groups. Proc. Lond. Math. Soc. 79, 569–604 (1999)

    Article  MATH  Google Scholar 

  17. Deligne, P.: Les immeubles des groupes de tresses généralisés. Invent. Math. 17, 273–302 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dyer, M.J.: Representation theories from Coxeter groups, Representations of groups (Banff, AB, 1994), CMS Conf. Proc. 16, 105–139 Amer. Math. Soc, Providence, RI, (1995)

  19. Dyer, M.J.: Modules for the dual nil Hecke ring. http://www3.nd.edu/dyer/papers/nilhecke

  20. Dyer, M.J., Lehrer, G.I.: On positivity in Hecke algebras. Geom. Dedic. 35, 115–125 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Elias, B., Williamson, G.: The Hodge theory of Soergel bimodules. Ann. Math. 180, 1089–1136 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fan, C.K., Green, R.M.: Monomials and Temperley-Lieb algebras. J. Algebra 190, 498–517 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Geck, M., Pfeiffer, G.: Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Math. Soc. Monographs, New Series 21, Oxford University Press (2000)

  24. Franzsen, W.N., Howlett, R.B., Mühlherr, B.: Reflections in abstracts Coxeter groups. Comment. Math. Helv. 81, 665–697 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gobet, T.: Bases of Temperley-Lieb algebras, Ph.D. thesis, Université de Picardie, (2014)

  26. Gobet, T.: Noncrossing partitions, fully commutative elements and bases of the Temperley-Lieb algebra. J. Knot Theory Ramif. 26, 27 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Gobet, T., Williams, N.: Noncrossing partitions and Bruhat order. Eur. J. Comb. 53, 8–34 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Halverson, T., Mazzocco, M., Ram, A.: Commuting families in Hecke and Temperley-Lieb algebras. Nagoya Math. J. 195, 125–152 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Humphreys, J.: Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  30. Kassel, C., Turaev, V.: Braid Groups, Graduate Texts in Mathematics, vol. 247. Springer, New York (2008)

    MATH  Google Scholar 

  31. Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53, 165–184 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lee, E.K., Lee, S.J.: Dual presentation and linear basis of the Temperley-Lieb algebras. J. Korean Math. Soc. 47, 445–454 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Michel, J.: A note on words in braid monoids. J. Algebra 215, 366–377 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Michel, J.: The development version of the CHEVIE package of GAP3. J. Algebra 435, 308–336 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Reiner, V.: Non-crossing partitions for classical reflection groups. Discret. Math. 177, 195–222 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Soergel, W.: Kazhdan-Lusztig polynomials and indecomposable bimodules over polynomial rings. J. Inst. Math. Jussieu 6, 501–525 (2007)

    Article  MATH  Google Scholar 

  37. Stembridge, J.R.: On the fully commutative elements of Coxeter groups. J. Algebr. Comb. 5, 353–385 (1996)

    MathSciNet  MATH  Google Scholar 

  38. Vincenti, C.: Algèbre de Temperley-Lieb de type B. C. R. Math. Acad. Sci. Paris 342, 233–236 (2006)

    Article  MATH  Google Scholar 

  39. Vincenti, C.: Monoïde dual, antichaînes de racines et algèbres de Temperley-Lieb, Ph.D. thesis, Université de Picardie(2007)

  40. Zinno, M.G.: A Temperley-Lieb basis coming from the braid group. J. Knot Theory Ramif. 11, 575–599 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank Patrick Dehornoy, Matthew Dyer and Jean Michel for useful discussions. We also thank the anonymous referee for his careful reading of the manuscript and many interesting comments and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Gobet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Digne, F., Gobet, T. Dual braid monoids, Mikado braids and positivity in Hecke algebras. Math. Z. 285, 215–238 (2017). https://doi.org/10.1007/s00209-016-1704-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1704-z

Keywords

Navigation