Skip to main content
Log in

Lattice-type self-similar sets with pluriphase generators fail to be Minkowski measurable

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

A long-standing conjecture of Lapidus states that under certain conditions, self-similar fractal sets fail to be Minkowski measurable if and only if they are of lattice type. It was shown by Falconer and Lapidus (working independently but both using renewal theory) that nonlattice self-similar subsets of \({\mathbb {R}}\) are Minkowski measurable, and the converse was shown by Lapidus and v. Frankenhuijsen a few years later, using complex dimensions. Around that time, Gatzouras used renewal theory to show that nonlattice self-similar subsets of \({\mathbb {R}}^d\) that satisfy the open set condition are Minkowski measurable for \(d \ge 1\). Since then, much effort has been made to prove the converse. In this paper, we prove a partial converse by means of renewal theory. Our proof allows us to recover several previous results in this regard, but is much shorter and extends to a more general setting; several technical conditions appearing in previous work have been removed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bandt, C., Hung, N.V., Rao, H.: On the open set condition for self-similar fractals. Proc. Am. Math. Soc. 134(5), 1369–1374 (2006). doi:10.1090/S0002-9939-05-08300-0

    Article  MathSciNet  MATH  Google Scholar 

  2. Demir, B., Deniz, A., Koçak, Ş., Üreyen, A.E.: Tube formulas for graph-directed fractals. Fractals 18(3), 349–361 (2010). doi:10.1142/S0218348X10004919

    Article  MathSciNet  MATH  Google Scholar 

  3. Deniz, A., Koçak, Ş., Özdemir, Y., Ratiu, A., Üreyen, A.E.: On the Minkowski measurability of self-similar fractals in \({\mathbb{R}}^d\). Turk. J. Math. 37(5), 830–846 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Deniz, A., Koçak, Ş., Özdemir, Y., Üreyen, A.E.: Tube formula for self-similar fractals with non-Steiner-like generators. In: Proceedings of the Gökova Geometry-Topology Conference 2012, pp. 123–145. International Press, Somerville (2013)

  5. Deniz, A., Koçak, Ş., Özdemir, Y., Üreyen, A.E.: Tube formulas for self-similar and graph-directed fractals. Math. Intell. 35(3), 36–49 (2013). doi:10.1007/s00283-013-9382-8

    Article  MathSciNet  MATH  Google Scholar 

  6. Deniz, A., Koçak, Ş., Özdemir, Y., Üreyen, A.E.: Tube volumes via functional equations. J. Geom. (2014). doi:10.1007/s00022-014-0241-3

    MATH  Google Scholar 

  7. Falconer, K.J.: On the Minkowski measurability of fractals. Proc. Am. Math. Soc. 123(4), 1115–1124 (1995). doi:10.2307/2160708

    Article  MathSciNet  MATH  Google Scholar 

  8. Falconer, K.J.: Techniques in Fractal Geometry. Wiley, Chichester (1997)

    MATH  Google Scholar 

  9. Falconer, K.J.: Fractal Geometry: Mathematical Foundations and Applications, 2nd edn. Wiley, Hoboken (2003). doi:10.1002/0470013850

    Book  MATH  Google Scholar 

  10. Feller, W.: An Introduction to Probability Theory and its Applications, vol. I, 3rd edn. Wiley, New York (1968)

    MATH  Google Scholar 

  11. Gatzouras, D.: Lacunarity of self-similar and stochastically self-similar sets. Trans. Am. Math. Soc. 352(5), 1953–1983 (2000). doi:10.1090/S0002-9947-99-02539-8

    Article  MathSciNet  MATH  Google Scholar 

  12. Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30(5), 713–747 (1981). doi:10.1512/iumj.1981.30.30055

    Article  MathSciNet  MATH  Google Scholar 

  13. Kesseböhmer, M., Kombrink, S.: Minkowski content and fractal Euler characteristic for conformal graph directed systems. J. Fractal Geom. 2(2), 171–227 (2015). doi:10.4171/JFG/19

    Article  MathSciNet  MATH  Google Scholar 

  14. Kneser, M.: Einige Bemerkungen über das Minkowskische Flächenmaß. Arch. Math. 6(5), 382–390 (1955). doi:10.1007/BF01900510

    Article  MathSciNet  MATH  Google Scholar 

  15. Koçak, Ş., Ratiu, A.V.: Inner tube formulas for polytopes. Proc. Am. Math. Soc. 140(3), 999–1010 (2012). doi:10.1090/S0002-9939-2011-11307-8

    Article  MathSciNet  MATH  Google Scholar 

  16. Kombrink, S.: Fractal curvature measures and Minkowski content for limit sets of conformal function systems. Ph.D. thesis, Universität Bremen. http://nbn-resolving.de/urn:nbn:de:gbv:46-00102477-19 (2011)

  17. Lalley, S.P.: The packing and covering functions of some self-similar fractals. Indiana Univ. Math. J. 37(3), 699–710 (1988). doi:10.1512/iumj.1988.37.37034

    Article  MathSciNet  MATH  Google Scholar 

  18. Lalley, S.P.: Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits. Acta Math. 163(1–2), 1–55 (1989). doi:10.1007/BF02392732

    Article  MathSciNet  MATH  Google Scholar 

  19. Lapidus, M.L.: Vibrations of fractal drums, the Riemann hypothesis, waves in fractal media and the Weyl-Berry conjecture. In: Ordinary and Partial Differential Equations, vol. IV (Dundee, 1992), Pitman Research Notes in Mathematics Series, vol. 289, pp. 126–209. Longman Science and Technology, Harlow (1993)

  20. Lapidus, M.L., van Frankenhuijsen, M.: Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and spectra of fractal strings, 2nd edn. Springer Monographs in Mathematics. Springer, New York (2013). doi:10.1007/978-1-4614-2176-4

    Book  MATH  Google Scholar 

  21. Lapidus, M.L., Pearse, E.P.J.: Tube formulas for self-similar fractals. In: Analysis on Graphs and its Applications, Proceedings of Symposia in Pure Mathematics, vol. 77, pp. 211–230. American Mathematical Society, Providence. arXiv:0711.0173 (2008)

  22. Lapidus, M.L., Pearse, E.P.J.: Tube formulas and complex dimensions of self-similar tilings. Acta Appl. Math. 112, 91–137 (2010). doi:10.1007/s10440-010-9562-x

    Article  MathSciNet  MATH  Google Scholar 

  23. Lapidus, M.L., Pearse, E.P.J., Winter, S.: Pointwise tube formulas for fractal sprays and self-similar tilings with arbitrary generators. Adv. Math. 227, 1349–1398 (2011). doi:10.1016/j.aim.2011.03.004

    Article  MathSciNet  MATH  Google Scholar 

  24. Lapidus, M.L., Pearse, E.P.J., Winter, S.: Minkowski measurability results for self-similar tilings and fractals with monophase generators. In: Carfi, D., Lapidus, M.L., Pearse, E.P.J., Van Frankenhuysen, M. (eds.) Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics I: Fractals in Pure Mathematics. Contemporary Mathematics, vol. 600, pp. 185–203. American Mathematical Society Providence, Rhode Island (2013). doi:10.1090/conm/600/11951

  25. Pearse, E.P.J.: Complex dimensions of self-similar systems. Ph.D. thesis, University of California, Riverside (2006)

  26. Pearse, E.P.J.: Canonical self-affine tilings by iterated function systems. Indiana Univ. Math J. 56(6), 3151–3169 (2007). doi:10.1512/iumj.2007.56.3220

    Article  MathSciNet  MATH  Google Scholar 

  27. Pearse, E.P.J., Winter, S.: Geometry of canonical self-similar tilings. Rocky Mt. J. Math. 42(4), 1327–1357 (2012). doi:10.1216/RMJ-2012-42-4-1327

    Article  MathSciNet  MATH  Google Scholar 

  28. Rataj, J., Winter, S.: Characterization of Minkowski measurability in terms of surface area. J. Math. Anal. Appl. 400(1), 120–132 (2013). doi:10.1016/j.jmaa.2012.10.059

    Article  MathSciNet  MATH  Google Scholar 

  29. Resman, M.: Invariance of the normalized Minkowski content with respect to the ambient space. Chaos Solitons Fractals 57, 123–128 (2013). doi:10.1016/j.chaos.2013.10.001

    Article  MathSciNet  Google Scholar 

  30. Schief, A.: Separation properties for self-similar sets. Proc. Am. Math. Soc. 122(1), 111–115 (1994). doi:10.2307/2160849

    Article  MathSciNet  MATH  Google Scholar 

  31. Winter, S.: Curvature measures and fractals. Dissertationes Math. 453, 1–66 (2008). doi:10.4064/dm453-0-1. (Rozprawy Mat.)

    Article  MathSciNet  MATH  Google Scholar 

  32. Winter, S.: Minkowski content and fractal curvatures of self-similar tilings and generator formulas for self-similar sets. Adv. Math. 274, 285–322 (2015). doi:10.1016/j.aim.2015.01.005

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The first author was supported by Grant 03/113/08 of the Zentrale Forschungsförderung, Universität Bremen. The third author was supported by the Deutsche Forschungsgemeinschaft (DFG), Grant WI 3264/2-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin P. J. Pearse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kombrink, S., Pearse, E.P.J. & Winter, S. Lattice-type self-similar sets with pluriphase generators fail to be Minkowski measurable. Math. Z. 283, 1049–1070 (2016). https://doi.org/10.1007/s00209-016-1633-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1633-x

Keywords

Mathematics Subject Classification

Navigation