Skip to main content
Log in

Hausdorffness for Lie algebra homology of Schwartz spaces and applications to the comparison conjecture

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

An Erratum to this article was published on 01 June 2016

Abstract

Let H be a real algebraic group acting equivariantly with finitely many orbits on a real algebraic manifold X and a real algebraic bundle \({\mathcal {E}}\) on X. Let \(\mathfrak {h}\) be the Lie algebra of H. Let \(\mathcal {S}(X,{\mathcal {E}})\) be the space of Schwartz sections of \({\mathcal {E}}\). We prove that \(\mathfrak {h}\mathcal {S}(X,{\mathcal {E}})\) is a closed subspace of \(\mathcal {S}(X,{\mathcal {E}})\) of finite codimension. We give an application of this result in the case when H is a real spherical subgroup of a real reductive group G. We deduce an equivalence of two old conjectures due to Casselman: the automatic continuity and the comparison conjecture for zero homology. Namely, let \(\pi \) be a Casselman–Wallach representation of G and V be the corresponding Harish–Chandra module. Then the natural morphism of coinvariants \(V_{\mathfrak {h}}\rightarrow \pi _{\mathfrak {h}}\) is an isomorphism if and only if any linear \(\mathfrak {h}\)-invariant functional on V is continuous in the topology induced from \(\pi \). The latter statement is known to hold in two important special cases: if H includes a symmetric subgroup, and if H includes the nilradical of a minimal parabolic subgroup of G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wallach, N.: Real Reductive groups II, Pure and Applied Math, vol. 132. Academic Press, Boston, MA (1992)

    Google Scholar 

  2. Casselman, W.: Canonical extensions of Harish–Chandra modules to representations of G. Can. J. Math. XL I(3), 385–438 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernstein, J., Krötz, B.: Smooth Fréchet globalizations of Harish–Chnadra modules. Israel J. Math. 199, 45–111 (2014). arXiv:0812.1684

    Article  MathSciNet  MATH  Google Scholar 

  4. Hecht, H., Taylor, J.L.: A remark on Casselman’s comparison theorem, Geometry and representation theory of real and \(p\)-adic groups (Córdoba, 1995), pp. 139–146, Progr. Math., 158, Birkhäuser Boston, Boston, MA (1998)

  5. van den Ban, E., Delorme, P.: Quelques proprietes des representations spheriques pour les espaces symetriques reductifs. J. Funct. Anal. 80, 284–307 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brylinski, J.-L., Delorme, P.: Vecteurs distributions H-invariants pour les series principales generalisees despaces symetriques reductifs et prolongement meromorphe dintegrales dEisenstein. Invent. Math. 109, 619–664 (1992)

    Article  MathSciNet  Google Scholar 

  7. Casselman, W., Hecht, H., Miličić, D.: Bruhat filtrations and Whittaker vectors for real groups. Proceedings of Symposia in Pure Mathematics, vol. 628 (2000)

  8. Aizenbud, A., Gourevitch, D., Minchenko, A.: Holonomicity of relative characters and applications to multiplicity bounds for spherical pairs. arXiv:1501.01479. To appear in Selecta Mathematica

  9. Krötz, B., Schlichtkrull, H. : Multiplicity bounds and the subrepresentation theorem for real spherical spaces. Trans. AMS. 368, 2749–2762 (2016). arXiv:1309.0930

  10. Trèves, F.: Topological Vector Spaces, distributions and kernels. Academic Press, New York (1967)

  11. Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  12. Shiota, M. : Nash Manifolds, Lecture Notes in Mathematics 1269 (1987)

  13. Sun, B.: Almost linear Nash groups. Chin. Ann. Math. Ser. B 36(3), 355–400 (2015). arXiv:1310.8011

    Article  MathSciNet  MATH  Google Scholar 

  14. Aizenbud, A., Gourevitch, D.: Schwartz functions on Nash Manifolds, International Mathematics Research Notices, vol. 2008, no. 5, Article ID rnm155, 37 pages. doi:10.1093/imrn/rnm155. See also arXiv:0704.2891 [math.AG]

  15. Aizenbud, A., Gourevitch, D. : De-Rham theorem and Shapiro lemma for Schwartz functions on Nash manifolds. Israel J. Math. 177(1), 155–188 (2010). See also arXiv:0802.3305v2 [math.AG]

  16. Aizenbud, A., Gourevitch, D.: Smooth transfer of Kloostermann integrals. Am. J. Math. 135, 143–182 (2013). See also arXiv:1001.2490 [math.RT]

  17. Aizenbud, A., Gourevitch, D., Sahi, S.: Twisted homology for the mirabolic nilradical. Israel J. Math. 206, 39–88 (2015). arXiv:1210.5389

    Article  MathSciNet  MATH  Google Scholar 

  18. Grothendieck, A.: Elements de geometrie algebrique. III. Etude cohomologique des faisceaux coherents. I Inst. Hautes Etudes Sci. Publ. Math. 11 (1961)

  19. Krötz, B., Schlichtkrull, H.: Finite orbit decomposition of real flag manifolds. J. Eur. Math. Soc. arXiv:1307.2375

  20. Kostant, B.: On Whittaker vectors and representation theory. Invent. Math. 48, 101–184 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Casselman, W., Miličić, D.: Asymptotic behavior of matrix coefficients of admissible representations. Duke Math. J. 49(4), 869–930 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kobayashi, T., Oshima, T.: Finite multiplicity theorems for induction and restriction. Adv. Math. 248, 921–944 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank Eitan Sayag and Joseph Bernstein for fruitful discussions, and the anonymous referee for useful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Gourevitch.

Additional information

A. Aizenbud was partially supported by ISF grant 687/13 and a Minerva foundation grant. D. Gourevitch was partially supported by ISF grant 756/12 and ERC Starting Grant StG 637912. B. Krötz was supported by ERC Advanced Investigators Grant HARG 268105.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aizenbud, A., Gourevitch, D., Krötz, B. et al. Hausdorffness for Lie algebra homology of Schwartz spaces and applications to the comparison conjecture. Math. Z. 283, 979–992 (2016). https://doi.org/10.1007/s00209-016-1629-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1629-6

Keywords

Mathematics Subject Classification

Navigation