Skip to main content
Log in

Local theta correspondences between epipelagic supercuspidal representations

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper we study the local theta correspondences between epipelagic supercupsidal representations of a type I classical dual pair \((G,G')\) over p-adic fields. We show that, besides an exceptional case, an epipelagic supercupsidal representation \(\pi \) of \({\widetilde{G}}\) lifts to an epipelagic supercupsidal representation \(\pi '\) of \({\widetilde{G}}'\) if and only if the epipelagic data of \(\pi \) and \(\pi '\) are related by the moment maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We warn that our trace form \({B_{\mathfrak {g}}}\) has a factor of \(\frac{1}{2}\).

  2. Let \(h \in G_x\) and \(\gamma \in \mathfrak {g}_{x,-{\frac{1}{m}}}\) be any lifts of g and \(\lambda \) respectively. We consider h and \(\gamma \) as elements in \({\mathrm {Hom}}_k(V,V)\). Then \(g\circ \lambda := h\circ \gamma + \mathfrak {g}_{x,-{\frac{1}{m}}^+}\in \mathfrak {g}_{x,-{\frac{1}{m}}:-{\frac{1}{m}}^+}\) is well defined.

  3. See also the proof of [22, Theorem 5.5].

  4. This condition is non-trivial if D / k is a ramified extension or D / k is a quaternion algebra.

References

  1. Adams, J.: L-functoriality for dual pairs. Asterisque 171–172, 85–129 (1989)

    MathSciNet  MATH  Google Scholar 

  2. Adler, J.D., Roche, A.: An intertwining result for \(p\)-adic groups. Can. J. Math. 52(3), 449–467 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Broussous, P., Stevens, S.: Buildings of classical groups and centralizers of Lie algebra elements. J. Lie Theory 19, 55–78 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Bruhat, F., Tits, J.: Schémas en groupes et immeubles des groupes classiques sur un corps local. Bull. Math. Soc. Fr. 112, 259–301 (1984)

    MathSciNet  MATH  Google Scholar 

  5. Bruhat, F., Tits, J.: Schémas en groupes et immeubles des groupes classiques sur un corps local, II. Groupes unitaires. Bull. Math. Soc. Fr. 115, 141–195 (1987)

    MathSciNet  MATH  Google Scholar 

  6. Gan, W.T., Takeda, S.: A proof of the Howe duality conjecture. J. AMS (to appear). arXiv:1407.1995 (2014)

  7. Goodman, R., Wallach, N.R.: Symmetry, Representations, and Invariants, GTM, vol. 255. Springer, Berlin (2009)

  8. Gross, B., Levy, P., Reeder, M., Yu, J.-K.: Gradings of positive rank on simple Lie algebras. Transform. Groups 17(4), 1123–1190 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Howe, R.: \(\theta \)-series and invariant theory. Proc. Symp. Pure Math. 33(Part 1), 275-285 (1979)

  10. Howe, R.: Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond. In: Piatetski-Shapiro, I., et al. (ed.) The Schur Lectures (1992). Ramat-Gan: Bar-Ilan University, Isr. Math. Conf. Proc. 8, 1-182 (1995)

  11. Kim, J.-L.: Supercuspidal representations: an exhaustion theorem. J. Am. Math. Soc. 20(2), 273–320 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kim, J.-L., Murnaghan, F.: Character expansions and unrefined minimal \(K\)-types. Am. J. Math. 125(6), 1199–1234 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lemaire, B.: Comparison of lattice filtrations and Moy-Prasad filtrations for classical groups. J. Lie Theory 19(1), 029–054 (2008)

    MathSciNet  Google Scholar 

  14. Levy, P.: Vinbergs \(\theta \)-groups in positive characteristic and Kostant–Weierstrass slices. Transform. Groups 14(2), 417–461 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. McNinch, G.J.: Levi factors of the special fiber of a parahoric group scheme and tame ramification. Algebr. Represent. Theory 17(2), 469–479 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Moeglin, C., Vigneras, M.F., Waldspurger, J.-L.: Correspondances de Howe sur un Corps \(p\)-Adique, Lecture Notes in Mathematics, vol. 1291. Springer, Berlin (1987)

  17. Moen, C.: The dual pair \((\text{ U }(1),\text{ U }(1))\) over a \(p\)-adic field. Pac. J. Math. 158(2), 365–386 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Moy, A., Prasad, G.: Unrefined minimal \(K\)-types for p-adic groups. Invent. Math. 116, 393–408 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Prasad, G., Yu, J.-K.: On finite group actions on reductive groups and buildings. Invent. Math. 147(3), 545–560 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pan, S.-Y.: Splittings of the metaplectic covers of some reductive dual pairs. Pac. J. Math. 199(1), 163–226 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pan, S.-Y.: Depth preservation in local theta correspondence. Duke Math. J. 113(3), 531–592 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pan, S.-Y.: Local theta correspondence and minimal \(K\)-types of positive depth. Isr. J. Math. 138, 317–352 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Reeder, M., Yu, J.-K.: Epipelagic representations and invariant theory. J. Am. Math. Soc. 27, 437–477 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sun, B., Zhu, C.-B.: Conservation relations for local theta correspondence. J. Am. Math. Soc. 28, 939–983 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tits, J.: Reductive Groups Over Local Fields, Automorphic Forms, Representations and L-Functions I. American Mathematical Society, Providence (1979)

    Google Scholar 

  26. Vinberg, E.B.: The Weyl group of a graded Lie algebra. Izv. Akad. Nauk SSR 40(3), 463–495 (1976)

    MathSciNet  MATH  Google Scholar 

  27. Waldspurger, J.-L.: Démonstration Dune Conjecture de Dualité de Howe dans le cas \(p\)-Adique, \(p \ne 2\) in Festschrift in honor of I. I. Piatetski-Shapiro on the Occasion of his Sixtieth Birthday, Israel Mathematical Conference Proceedings, vol. 2, pp. 267-324. Weizmann, Jerusalem (1990)

Download references

Acknowledgments

We would like to thank Wee Teck Gan and Jiu-Kang Yu for their valuable comments. Hung Yean Loke is supported by a MOE-NUS AcRF Tier 1 Grant R-146-000-208-112. Jia-Jun Ma is partially supported by ISF Grant 1138/10 during his postdoctoral Fellowship at Ben Gurion University and HKRGC Grant CUHK 405213 during his postdoctoral fellowship in IMS of CUHK. Gordan Savin is supported by an NSF Grant DMS-1359774.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung Yean Loke.

Appendices

Appendix 1: Description of an apartment and Proof of Lemma 8.2.1

First the fact that \({\mathsf {P}}\rightarrow {\mathsf {J}}\) splits follows from the work of McNinch [15]. For our case, the splitting could be constructed by an elementary method which we will explain below.

We retain the notation in Sect. 3.1. Let K be the maximal unramified extension in D defined in the following way:

  1. (i)

    \(K := k\) if \(D=k\);

  2. (ii)

    \(K := D\) if D / k is an unramified extension;

  3. (iii)

    \(K := k\) if D / k is a ramified extension and

  4. (iv)

    if D the quaternion algebra over k, then K is the unramified quadratic extension of k in D normalized by \(\varpi _D\).

Let \(\nu _D = {\nu }(\varpi _D)\). Then \({{\nu }_D}= \frac{1}{2}\) if and only if D / k is ramified or D is the quaternion algebra over k. Under this setting, \(D=K\) if \({{\nu }_D}=1\) and \(D = K \oplus \varpi _D K\) if \({{\nu }_D}= \frac{1}{2}\). In all cases, \(\mathfrak {f}_K = \mathfrak {f}_D\).

1.1 Description of an apartment

We recall the explicit description of an apartment in \({\mathcal {B}}({\mathbf {G}},k)\) (c.f. [5, §2.9] and [3, §2-4]). Let \({\lceil r \rceil }\) denote the largest integer not greater than \(r \in {\mathbb {R}}\). Let n be the dimension of a maximally isotropic subspace in V. Let \(I := I^+\sqcup I^- \sqcup I^0\) where \(I^+ = \left\{ 1, \ldots , n\right\} \), \(I^- = -I^+\) and \(I^0\) is any index set with \(\dim _DV - 2n\) elements. Fix a basis \(\left\{ e_i | i \in I\right\} \) of V such that

  1. (a)

    \(\left\langle {e_i}, {e_j}\right\rangle _V = \left\langle {e_{-i}}, {e_{-j}}\right\rangle _V = 0\) and \(\left\langle {e_i}, {e_{-j}}\right\rangle _V = \delta _{i,j}\) for all \(i, j \in I^+\);

  2. (b)

    \(e_i\) is anisotropic for \(i\in I^0\) and \(\left\langle {e_i}, {e_j}\right\rangle _V = 0\) for \(i\in I^0\) and \(i\ne j\in I\).

For \(i\in I^0\), we can choose \(e_i\) such that

  1. (i)

    \(\left\langle {e_i}, {e_i}\right\rangle _V\) has valuation either 0 or \({{\nu }_D}\);

  2. (ii)

    \(\left\langle {e_i}, {e_i}\right\rangle _V\) takes value either in \({\mathfrak {o}}_K\) or in \(\varpi _D{\mathfrak {o}}_K\).Footnote 4

Let \({\mathbf {S}}\) be the maximal k-split torus in \({\mathbf {G}}\) which stabilizes \(e_iD\) for all \(i\in I^+\sqcup I^-\) and fixes \(e_j\) for all \(j \in I^0\). Then the apartment \({\mathcal {A}}({\mathbf {S}},k)\) in \({\mathcal {B}}({\mathbf {G}},k)\) corresponds to the set of self-dual lattice functions which split under this basis. More precisely, if \({\mathscr {L}}\) is in the apartment, then there is a (unique) tuple of real numbers \((a_1,\ldots , a_n)\in {\mathbb {R}}^n\) such that

$$\begin{aligned} {\mathscr {L}}_r = \bigoplus _{i\in I} e_i \mathfrak {p}_D^{{\lceil (r-a_i)/{{\nu }_D} \rceil }} \end{aligned}$$
(17)

where

  1. (i)

    \(a_{-i} = - a_i\) for \(i\in I^+\) and

  2. (ii)

    \(a_{i} = \frac{1}{2}{\nu }(\left\langle {e_i}, {e_i}\right\rangle _V)\).

In fact, \((a_1,\ldots ,a_n) \mapsto {\mathscr {L}}\) gives an identification of \({\mathbb {R}}^n\) with the apartment.

Remark

If \({\mathbf {G}}\) splits over an unramified extension of k, then the lattice function in (17) corresponds to a hyperspecial point in \({\mathcal {A}}({\mathbf {S}},k)\) if and only if \(a_i/\nu _D \in b + {\mathbb {Z}}\) for all \(i \in I\) where \(b = 0\) or \(\frac{1}{2}\).

1.2 Construction of the splitting

We let \({\mathscr {L}}\) be a lattice function as in (17) above. We consider two cases.

Case 1.:

First we assume that \({{\nu }_D}= 1\). In this case \(D=K\). Let [r] denote the coset \(r+{\mathbb {Z}}\in {\mathbb {Q}}/{\mathbb {Z}}\) and define

$$\begin{aligned} {V^{[r]}}:= \sum _{a_i\equiv r\pmod {{\mathbb {Z}}}} e_i K \quad \text {and}\quad {{{\mathscr {V}}}^r}:= {V^{[r]}}\cap {\mathscr {L}}_r = \sum _{a_i\equiv r\pmod {{\mathbb {Z}}}}e_i\mathfrak {p}_K^{r-a_i}. \end{aligned}$$

We make the following observations.

(a):

The restriction of the Hermitian sesquilinear form to \({V^{[r]}}\) is non-degenerate if \(r\equiv 0\) or \(\frac{1}{2}\pmod {{\mathbb {Z}}}\) and totally isotropic if otherwise.

(b):

For \(r\in {\mathbb {R}}\), \({V^{[r]}}\) is in perfect pairing with \({V^{[-r]}}\). In particular, \({{\mathscr {V}}}^0\) and \({{\mathscr {V}}}^\frac{1}{2}\) have \(\epsilon \)-Hermitian sesquilinear forms \(\left\langle {\;} , {\;} \right\rangle _V\) and \(\left\langle {\;} , {\;} \right\rangle _V \varpi _D^{-1}\) which are defined over \({\mathfrak {o}}_K\).

Case 2.:

Now assume \({{\nu }_D}= \frac{1}{2}\). We define the K-module

$$\begin{aligned} {V^{[r]}}:= \sum _{a_i\equiv r} e_i K + \sum _{a_i+\frac{1}{2}\equiv r} e_i \varpi _D K \end{aligned}$$

and \({\mathfrak {o}}_K\)-module

$$\begin{aligned} {{{\mathscr {V}}}^r}:= {V^{[r]}}\cap {\mathscr {L}}_r = \sum _{ a_i\equiv r}e_i\mathfrak {p}_K^{r-a_i} + \sum _{ a_i +\frac{1}{2}\equiv r } e_i\varpi _D \mathfrak {p}_K^{r-a_i-\frac{1}{2}}. \end{aligned}$$

We make the following observations.

(a):

The two K-subspaces \({V^{[r]}}\) and \({V^{[r+\frac{1}{2}]}}\) in V are different. However \({V^{[r]}}= {V^{[r+\frac{1}{2}]}}\varpi _D\) and \({{\mathscr {V}}}^{r+\frac{1}{2}} = {{\mathscr {V}}}^r\varpi _D\).

(b):

The restriction of the Hermitian sesquilinear form to \({V^{[r]}}\) is non-degenerate if \(r \equiv 0\) or \(\frac{1}{4}\pmod {\frac{1}{2}{\mathbb {Z}}}\) and totally isotropic if otherwise.

(c):

For \(r\in {\mathbb {R}}\), \({V^{[r]}}\) is in perfect pairing with \({V^{[-r]}}\). In particular, there is an \(\epsilon \)-Hermitian sesquilinear form \(\left\langle {\;} , {\;} \right\rangle _V\) and a \((-\epsilon )\)-Hermitian sesquilinear form \(\left\langle {\;} , {\;} \right\rangle _V \varpi _D^{-1}\) defined on \({{\mathscr {V}}}^0\) and \({{\mathscr {V}}}^{\frac{1}{4}}\) respectively. Both forms are defined over \({\mathfrak {o}}_K\).

Thanks to the definitions of \({V^{[r]}}\) and \({{{\mathscr {V}}}^r}\), the following holds for both Cases 1 and 2:

  1. (i)

    \(\dim _K {V^{[r]}}= \dim _{\mathfrak {f}_D}{\mathscr {L}}_r/{\mathscr {L}}_{r^+}\) and the natural inclusion \({{{\mathscr {V}}}^r}\hookrightarrow {\mathscr {L}}_r\) induces an isomorphism

    (18)
  2. (ii)

    \(V = \bigoplus _{[r]\in {\mathbb {Q}}/{\mathbb {Z}}} {V^{[r]}}\).

  3. (iii)

    Define an \({\mathfrak {o}}_k\)-group scheme:

    $$\begin{aligned} {\mathscr {Q}}:= \mathrm{{U}}({{\mathscr {V}}}^0)\times \mathrm{{U}}({{\mathscr {V}}}^{\frac{1}{2}{{\nu }_D}})\times \prod _{r\in (0,\frac{1}{2}{{\nu }_D})} {\mathrm {GL}}_{{\mathfrak {o}}_K}({{\mathscr {V}}}^{r}). \end{aligned}$$

    Let Q and \({\mathsf {Q}}\) denote the generic fiber and special fiber of \({\mathscr {Q}}\) respectively.

  4. (iv)

    The lattices \({{{\mathscr {V}}}^r}\) give a vertex y in the building of Q. Clearly,

    $$\begin{aligned} {\mathscr {Q}}= Q_{y},\quad Q_{y,0^+} = Q_{y,1} \quad \text {and}\quad {\mathsf {Q}}= Q_{y}/Q_{y,0^+}. \end{aligned}$$
  5. (v)

    The natural action of \({\mathscr {Q}}\) on V identifies Q with \(G \cap \left( \prod _{[r]\in {\mathbb {Q}}/{\mathbb {Z}}}{\mathrm {GL}}_K({V^{[r]}})\right) \) so that \({\mathscr {Q}}= Q \cap G_{{\mathscr {L}}}\).

  6. (vi)

    The natural embedding \({\mathscr {Q}}\rightarrow G_{{\mathscr {L}}}\) induces an isomorphism of \(\mathfrak {f}\)-groups

    which is compatible with (18). This follows for the fact that the both sides are isomorphic to the right hand side of (7).

For \(V'\), we likewise divide into two cases and define similar notations \(V'^{[r]}\), \({{\mathscr {V}}}'^r\), \(Q'\), \({\mathscr {Q}}'\) etc as above.

Proof of Lemma 8.2.1

We recall \({\mathscr {B}}= {\mathscr {L}}\otimes {\mathscr {L}}'\). For \(\mu \in {\mathbb {R}}\), we define \(X^{[\mu ]} = \sum _{[t]+[t'] = [\mu ]} V^{[t]}\otimes _K V'^{[t']}\). Then

  1. (i)

    \(W = \bigoplus _{[\mu ]\in {\mathbb {Q}}/{\mathbb {Z}}} X^{[\mu ]}\)

  2. (ii)

    \({\mathscr {X}}_\mu := \sum _{t+t' = \mu } {{\mathscr {V}}}^t\otimes _{{\mathfrak {o}}_K} {{\mathscr {V}}}'^{t'}\) equals \(X^{[\mu ]}\cap {\mathscr {B}}_{\mu }\).

Using the natural inclusion \({\mathscr {X}}_\mu \hookrightarrow {\mathscr {B}}_{\mu }\), we have

  1. (i)

    \({\mathscr {X}}_{\mu +1} = {\mathscr {X}}_{\mu ^+} := X_{[\mu ]}\cap {\mathscr {B}}_{\mu ^+}\).

  2. (ii)

    .

Now we recall (13) where

$$\begin{aligned} {\mathsf {Y}}:= {\mathscr {B}}_{{\frac{1}{2m}}:{\frac{1}{2m}}^+}, \quad {\mathsf {W}}:= {\mathscr {B}}_{-{\frac{1}{2m}}:{\frac{1}{2m}}^+} \quad \text {and} \quad {\mathsf {X}}:= {\mathscr {B}}_{-{\frac{1}{2m}}:-{\frac{1}{2m}}^+}. \end{aligned}$$

Let \({\mathsf {X}}' := {\mathscr {X}}_{-{\frac{1}{2m}}}/{\mathscr {X}}_{-{\frac{1}{2m}}}\mathfrak {p}_K\). Clearly by (ii).

Note that \(m\ge 2\). So \({\frac{1}{m}}<1\). The inclusion \({\mathscr {X}}_{-{\frac{1}{2m}}}\hookrightarrow {\mathscr {B}}_{-{\frac{1}{2m}}}\) gives an embedding

(19)

which splits the quotient map \({\mathsf {W}}\twoheadrightarrow {\mathsf {X}}\). The embedding \({\mathscr {Q}}\times {\mathscr {Q}}' \hookrightarrow G_{\mathscr {L}}\times G'_{{\mathscr {L}}'}\) induces a splitting of \({\mathsf {P}}\twoheadrightarrow {\mathsf {J}}\):

(20)

Note that \({\mathsf {Y}}\), \({\mathsf {X}}'\) and \({\mathsf {W}}\) are natural \({\mathsf {Q}}\times {\mathsf {Q}}'\)-modules and (19) is an \({\mathsf {Q}}\times {\mathsf {Q}}'\)-equivariant embedding. We get a decomposition \({\mathsf {W}}= {\mathsf {X}}' \oplus {\mathsf {Y}}\) as \({\mathsf {J}}\)-modules under the splitting (20). \(\square \)

Appendix 2: Matrix calculations

In this appendix, we prove Lemma 7.3.3 and Lemma 8.1.1.

1.1 Proof of Lemma 7.3.3

We construct below an \({\mathscr {A}}\) defined over an algebraically closed field \({\overline{k}}\) which satisfies the lemma. The lemma and the proof below is valid for any field provided \((G,G')\) is an irreducible dual pair such that G and \(G'\) are both split.

There are only several cases.

  1. 1.

    \((G,G') = ({\mathrm {GL}}(n), {\mathrm {GL}}(n'))\) with \(n \le n'\). We can identify

    1. (a)

      \(W = \mathrm{Mat}_{n,n'} \oplus \mathrm{Mat}_{n,n'}\),

    2. (b)

      \((x,y)^\star = (y,-x)\) for \((x,y) \in W\),

    3. (c)

      \(M(x,y) = xy^\top \in {{\mathfrak {g}}{\mathfrak {l}}}(n)\) and

    4. (d)

      \(M(x,y) = y^\top x \in {{\mathfrak {g}}{\mathfrak {l}}}(n')\).

    We set

    $$\begin{aligned} {\mathscr {A}}= \left\{ w= (\begin{pmatrix} a&0 \end{pmatrix}, \begin{pmatrix} b&0 \end{pmatrix}) |\begin{array}{l}a = \mathrm {diag}(a_1,\ldots , a_n) \\ b = \mathrm {diag}(b_1,\ldots , b_n) \end{array} \text { with } a_i, b_i \in {\overline{k}}\right\} . \end{aligned}$$

    For any \(w \in {\mathscr {A}}\), \(M(w) = ab\) and \(M'(w) = \begin{pmatrix} ab &{}\quad 0 \\ 0 &{}\quad 0 \end{pmatrix}\).

  2. 2.

    \((G,G')= ({\mathrm {Sp}}(2n), \mathrm{O}(2n'+1))\) with \(n \le n'\). We can choose suitable bases so that \(V = {\overline{k}}^{2n}\) and \(V' = {\overline{k}}^{2n'+1}\) such that \(\left\langle {v_1}, {v_2}\right\rangle _V = v_1^{\top } J v_2\) and \(\left\langle {v'_1}, {v'_2}\right\rangle _{V'} = v'^\top _1J'v'_2\) where

    $$\begin{aligned} J = \begin{pmatrix} 0&{}\quad I_n \\ -I_n &{}\quad 0 \end{pmatrix} \quad \text {and} \quad J' = \begin{pmatrix}0 &{}\quad 0 &{}\quad I_n \\ 0 &{}\quad I_{2n'-2n+1} &{}\quad 0\\ I_n &{}\quad 0&{}\quad 0 \end{pmatrix}. \end{aligned}$$

    Now we can identify

    1. (a)

      \(W = M_{2n'+1,2n}\),

    2. (b)

      \(w^\star = J^{-1} w^{\top } J'\),

    3. (c)

      \(M(w) = w^\star w\) and

    4. (d)

      \(M'(w) = w w^\star \).

    We consider

    $$\begin{aligned} {\mathscr {A}}= \left\{ \begin{pmatrix}a&{}\quad 0 \\ 0&{}\quad 0\\ 0 &{}\quad -b \end{pmatrix}|\begin{array}{l}a = \mathrm {diag}(a_1,\ldots , a_n), \\ b = \mathrm {diag}(b_1,\ldots , b_n), \end{array},\text { with } a_i, b_i \in {\overline{k}}\right\} . \end{aligned}$$

    For any \(w\in {\mathscr {A}}\), \(M(w) = \begin{pmatrix} ab &{}\quad 0\\ 0&{}\quad -ab \end{pmatrix}\) and \(M'(w) = \begin{pmatrix} ab &{}\quad 0&{}\quad 0 \\ 0&{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad -ab \end{pmatrix}\).

  3. 3.

    We leave the all other cases where \((G,G') = ({\mathrm {Sp}}(2n),\mathrm{O}(2n'+2))\), \((\mathrm{O}(2n),{\mathrm {Sp}}(2n'))\) or \((\mathrm{O}(2n+1),{\mathrm {Sp}}(2n'))\) where \(n\le n'\) to the reader. The formulas are similar to 2. \(\square \)

1.2 Proof of Lemma 8.1.1

We translate everything to the left hand side of (9) and denote the images of \({\bar{w}}\), \(\lambda \), \(\lambda '\), \({{\mathsf {X}}_{\lambda ,\lambda '}}\), \({{\mathsf {S}}_{\lambda }}\), \(\ldots \), by \({\mathring{w}}\), \({\mathring{\lambda }}\), \({\mathring{\lambda }}'\), \({\mathring{{\mathsf {X}}}_{{\mathring{\lambda }},{\mathring{\lambda }'}}}\), \({\mathring{{\mathsf {S}}}_{\mathring{\lambda }}}\), \(\ldots \) respectively. We also transport implicitly the Galois actions. Then \({\mathring{\lambda }}\) and \({\mathring{\lambda }}'\) are regular semisimple elements. It is enough to prove the statements for \({\mathring{\lambda }}\) and \({\mathring{\lambda }'}\).

  1. (i)

    First we assume that \({\mathring{\lambda }}\in {\mathrm {Hom}}_{\mathfrak {f}_{{D(E)}}}({\mathsf {V}},{\mathsf {V}})\) is full rank. In this case \({\mathring{w}}\in {\mathrm {Hom}}_{\mathfrak {f}_{{D(E)}}}({\mathsf {V}},{\mathsf {V}}')\) is full rank too. By Witt’s theorem, \({\mathring{{\mathsf {M}}}}'^{-1}({\mathring{\lambda }}')\) is a single free \({\mathring{{\mathsf {G}}}}\)-orbit. Let \({\mathring{w}}'\in {\mathring{{\mathsf {X}}}_{{\mathring{\lambda }},{\mathring{\lambda }'}}}\). Then there is a unique \(g \in {\mathring{{\mathsf {G}}}}\) such that \({\mathring{w}}' = g \cdot {\mathring{w}}\). Clearly \(g\in {\mathrm {Stab}}_{{\mathring{{\mathsf {G}}}}}({\mathring{\lambda }})\). For every \(\sigma \in \mathrm {Gal}(E/k)\),

    $$\begin{aligned} g \cdot {\mathring{w}}= {\mathring{w}}' = \sigma ({\mathring{w}}') = \sigma (g)\cdot \sigma ({\mathring{w}}) = \sigma (g)\cdot {\mathring{w}}. \end{aligned}$$
    (21)

    Since \({\mathring{{\mathsf {G}}}}\) acts freely, we have \(g = \sigma (g)\). Hence \(g\in {\mathring{{\mathsf {S}}}_{\mathring{\lambda }}}= ({\mathrm {Stab}}_{\mathring{{\mathsf {G}}}}({\mathring{\lambda }}))^{\mathrm {Gal}(E/k)}\). This proves (i) in these cases. Now we suppose that \({\mathring{\lambda }}\) is not full rank i.e. Case (E). This only occurs for unitary groups of equal rank. We refer to the “Proof of Lemma 7.3.3” section in “Appendix 2” for the notation. In this case, \({\mathring{{\mathsf {W}}}}= M_{nn}({\overline{\mathfrak {f}}}) \oplus M_{nn}({\overline{\mathfrak {f}}})\) are two copies of n by n matrices and \({\mathring{\lambda }}\) is of rank \(n-1\). There is an element in \(\mathrm {Gal}(E/k)\) exchanging the two components of \({\mathring{w}}= (A,B)\), hence A and B have the same rank \(n-1\). The group \({\mathring{{\mathsf {G}}}}\) is a general linear group. Let \({\mathring{{{\mathsf {S}}}{{\mathsf {L}}}}}\) be the special linear group in \({\mathring{{\mathsf {G}}}}\). Let \({\mathring{w}}'\in {\mathring{{\mathsf {X}}}_{{\mathring{\lambda }},{\mathring{\lambda }'}}}\). Let \({\mathring{{{\mathsf {S}}}{{\mathsf {L}}}}}_{{\mathring{\lambda }}} := {\mathrm {Stab}}_{{\mathring{{{\mathsf {S}}}{{\mathsf {L}}}}}}({\mathring{\lambda }})\). It is straightforward to check that \({\mathring{w}}'\) and \({\mathring{w}}\) are in the same \({\mathring{{{\mathsf {S}}}{{\mathsf {L}}}}}_{{\mathring{\lambda }}}\)-orbit on which \({\mathring{{{\mathsf {S}}}{{\mathsf {L}}}}}_{{\mathring{\lambda }}}\) acts freely. Let \(g\in {\mathring{{{\mathsf {S}}}{{\mathsf {L}}}}}_{{\mathring{\lambda }}}\) such that \({\mathring{w}}' = g\cdot {\mathring{w}}\). Again by (21), g is Galois invariant, i.e. \(g\in {\mathring{{\mathsf {S}}}_{\mathring{\lambda }}}\). This proves (i).

  2. (ii)

    Let \(w \in {\mathscr {B}}_{-{\frac{1}{2m}}}\) be a lift of \({{\bar{w}}}\). Without loss of generality, we may assume that w is of full rank. Then \(\Gamma = M(w)\) and \(\Gamma ' = M'(w)\) are lifts of \(\lambda \) and \(\lambda '\) respectively. Let \({H_{\Gamma }}\) (resp. \({H'_{\Gamma '}}\)) be the stabilizer of \(\Gamma \) (resp. \(\Gamma '\)) in G (resp. \(G'\)). We recall that \({H_{\Gamma }}\) is anisotropic so \({\mathcal {B}}({H_{\Gamma }}) = \left\{ x \right\} \) as shown in the proof of Proposition 2.2.2. This implies that \({H_{\Gamma }}\subseteq G_{\mathscr {L}}\) and \({H'_{\Gamma '}}\subseteq G'_{{\mathscr {L}}'}\). Using the same argument and Witt’s theorem as in (i), for every \(g' \in {H'_{\Gamma '}}\) there is a unique \(g \in {H_{\Gamma }}\) such that \(g' w = g^{-1} w\). The map \(\tilde{\alpha }:{H'_{\Gamma '}}\rightarrow {H_{\Gamma }}\) given by \(g' \mapsto g\) is a surjective homomorphism. Note that \({H_{\Gamma }}\) (resp. \({H'_{\Gamma '}}\)) surjects onto \({{\mathsf {S}}_{\lambda }}\) (resp. \({{\mathsf {S}}'_{\lambda '}}\)) since \(\Gamma \) (resp. \(\Gamma '\)) is a good element (c.f. [12, Corollary 2.3.5 and Lemma 2.3.6]). Then \(\tilde{\alpha }\) induces a homomorphism \(\alpha :{{\mathsf {S}}'_{\lambda '}}\rightarrow {{\mathsf {S}}_{\lambda }}\).

  3. (iii)

    This follows from the proofs of (i) and (ii).

  4. (iv)

    Note that \(\mathrm{Im\,}{\mathring{w}}^\star = \mathrm{Im\,}{\mathring{\lambda }}\subsetneq {\mathsf {V}}\). Let \(g \in {\mathring{{\mathsf {S}}}_{\mathring{\lambda }}}\). Then \(g\in {\mathring{\mathbb {S}}_{{\mathring{w}}}}\) if and only if \(g|_{\mathrm{Im\,}{\mathring{w}}^*} =\mathrm{id}\) if and only if \(g|_{\mathrm{Im\,}{\mathring{\lambda }}} = \mathrm{id}\) if and only if \(g \in {\mathring{\mathbb {S}}_{{\mathring{\lambda }}}}\), i.e. \({\mathring{\mathbb {S}}_{{\mathring{w}}}}= {\mathring{\mathbb {S}}_{{\mathring{\lambda }}}}\). Since \({\mathring{{\mathsf {X}}}_{{\mathring{\lambda }},{\mathring{\lambda }'}}}\cong {\mathring{{\mathsf {S}}}_{\mathring{\lambda }}}/{\mathring{\mathbb {S}}_{{\mathring{w}}}}\), The last assertion is clear. \(\square \)

Appendix 3: Lattice model and splitting

Let \({\mathrm {Sp}}(W)\) be a symplectic group of a symplectic space W. Proposition 3.3.1 follows from Lemma A.3.1 below. One may compare the lemma with [24, §4.1] and [20].

Lemma A.3.1

Let \(A_1\) and \(A_2\) be two self-dual lattices in W. For \(i = 1,2\), let \(\omega _{A_i}:{\mathrm {Sp}}(W) \rightarrow {\mathrm {Mp}}(W)\) be the section defined by the lattice model \({{\mathscr {S}}}(A_i)\) as in (4). Then

$$\begin{aligned} \omega _{A_1}(g) = \omega _{A_2}(g) \quad \forall g\in {\mathrm {Sp}}_{A_1}\cap {\mathrm {Sp}}_{A_2}. \end{aligned}$$

Proof

We have an intertwining operator \(\Xi :{{\mathscr {S}}}(A_1) \rightarrow {{\mathscr {S}}}(A_2)\) given by \((\Xi \,f)(w) = \int _{A_2}\psi (\frac{1}{2}\left\langle {a}, {w}\right\rangle ) f(w+a) {\mathrm {d}a}\) between the two lattice models. This intertwining operator is unique up to scalar.

Let \(g\in {\mathrm {Sp}}_{A_1}\cap {\mathrm {Sp}}_{A_2}\). Since \(g:A_2 \rightarrow A_2\) is measure preserving,

$$\begin{aligned} ((\omega _{A_2}(g)\circ \Xi f)(w)= & {} \int _{A_2}\psi (\frac{1}{2}\left\langle {a}, {g^{-1}w}\right\rangle ) f(g^{-1}w +a) {\mathrm {d}a}\\= & {} \int _{A_2}\psi (\frac{1}{2}\left\langle {ga}, {w}\right\rangle ) f(g^{-1}w +a) {\mathrm {d}a}\\= & {} \int _{A_2}\psi (\frac{1}{2}\left\langle {a}, {w}\right\rangle ) f(g^{-1}w + g^{-1}a) {\mathrm {d}a}\\= & {} (\Xi \circ \omega _{A_1}(g) f)(w). \end{aligned}$$

This proves the lemma. \(\square \)

Let \(x\in {\mathcal {B}}({\mathbf {G}},k)\). We pick any \(x'\in {\mathcal {B}}({\mathbf {G}}',k)\) and let \({\mathscr {L}}\) and \({\mathscr {L}}'\) be the lattice functions corresponding to x and \(x'\) respectively. Let \({\mathscr {B}}= {\mathscr {L}}\otimes {\mathscr {L}}'\) be the tensor product lattice function and A be any self-dual lattice such that \({\mathscr {B}}_{0^+} \subseteq A \subseteq {\mathscr {B}}_{0}\). We have \(G_{x,0^+}\) stabilizes A, i.e. \(G_{x,0^+} \subseteq {{\mathrm {Sp}}_A}\) (see also [22, §3.3.2]). As a corollary of Lemma A.3.1, the lattice models give a canonical splitting

$$\begin{aligned} \omega _+ :\bigcup _{x\in {\mathcal {B}}({\mathbf {G}},k)} G_{x,0^+} \longrightarrow {\widetilde{G}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loke, H.Y., Ma, JJ. & Savin, G. Local theta correspondences between epipelagic supercuspidal representations. Math. Z. 283, 169–196 (2016). https://doi.org/10.1007/s00209-015-1594-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-015-1594-5

Keywords

Mathematics Subject Classification

Navigation