Skip to main content
Log in

The symmetric invariants of centralizers and Slodowy grading

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let \(\mathfrak {g}\) be a finite-dimensional simple Lie algebra of rank \(\ell \) over an algebraically closed field \(\Bbbk \) of characteristic zero, and let e be a nilpotent element of \(\mathfrak {g}\). Denote by \(\mathfrak {g}^{e}\) the centralizer of e in \(\mathfrak {g}\) and by \( \mathrm{S}({\mathfrak g}^{e}) ^{{\mathfrak g}^{e}} \) the algebra of symmetric invariants of \(\mathfrak {g}^{e}\). We say that e is good if the nullvariety of some \(\ell \) homogenous elements of \( \mathrm{S}({\mathfrak g}^{e}) ^{{\mathfrak g}^{e}} \) in \(({\mathfrak g}^{e})^{*}\) has codimension \(\ell \). If e is good then \( \mathrm{S}({\mathfrak g}^{e}) ^{{\mathfrak g}^{e}} \) is a polynomial algebra. The main result of this paper stipulates that if for some homogenous generators of \( \mathrm{S}({\mathfrak g}) ^{{\mathfrak g}} \), the initial homogenous components of their restrictions to \(e+\mathfrak {g}^{f}\) are algebraically independent, with (ehf) an \(\mathfrak {sl}_2\)-triple of \(\mathfrak {g}\), then e is good. As applications, we pursue the investigations of Panyushev et al. (J. Algebra 313:343–391, 2007) and we produce (new) examples of nilpotent elements that satisfy the above polynomiality condition, in simple Lie algebras of both classical and exceptional types. We also give a counter-example in type \(\mathbf{D}_{7}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. i.e., this means that the Dynkin grading of \(\mathfrak {g}\) associated with the nilpotent element has no odd term.

References

  1. Arakawa, T., Premet, A.: Quantization of Fomenko-Mishchenko algebras via affine W-algebras (preprint)

  2. Benson, D.J.: Polynomial Invariants of Finite Groups. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  3. Bolsinov, A.V.: Commutative families of functions related to consistent Poisson brackets. Acta Applicandae Mathematicæ 24(1), 253–274 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourbaki, N.: Algèbre commutative, Chapitre 10, Éléments de mathématiques, Masson (1998), Paris

  5. Brown, J., Brundan, J.: Elementary invariants for centralizers of nilpotent matrices. J. Aust. Math. Soc. 86(1), 1–15 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carter, R.W.: Finite groups of Lie type: conjugacy classes and complex characters. Wiley, New York (1985)

    MATH  Google Scholar 

  7. Charbonnel, J.-Y., Moreau, A.: The index of centralizers of elements of reductive Lie algebras. Doc. Math. 15, 387–421 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Collingwood, D., McGovern, W.: Nilpotent Orbits in Semisimple Lie Algebras. Van Nostrand Reinhold Co., New York (1993)

    MATH  Google Scholar 

  9. de Graaf, W.A.: Computing with Nilpotent Orbits in Simple Lie Algebras of Exceptional Type. London Mathematical Society, London (2008)

    MATH  Google Scholar 

  10. Dixmier, J.: Algèbres Enveloppantes. Gauthier-Villars, Paris (1974)

    MATH  Google Scholar 

  11. Dixmier, J., Duflo, M., Vergne, M.: Sur la représentation coadjointe d’une algèbre de Lie. Compos. Math. 29, 309–323 (1974)

    MathSciNet  MATH  Google Scholar 

  12. Duflo, M., Vergne, M.: Une propriété de la représentation coadjointe d’une algèbre de Lie. C.R.A.S, Paris (1969)

    MATH  Google Scholar 

  13. Feigin, B., Frenkel, E.: Affine Kac–Moody algebras at the critical level and Gel’fand-Dikiĭ algebras. Infinite analysis, Part A, B (Kyoto, 1991), 197–215, Advanced Series in Mathematical Physics, vol. 16, World Science Publisher, River Edge, NJ (1992)

  14. Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics. Springer, Berlin (1977)

    Book  Google Scholar 

  15. Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II. Ann. Math. 79 (1964), pp. 109–203 and pp. 205–326

  16. Joseph, A., Shafrir, D.: Polynomiality of invariants, unimodularity and adapted pairs. Transf. Groups 15, 851–882 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kostant, B.: Lie group representations on polynomial rings. Am. J. Math. 85, 327–404 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  18. Matsumura, H.: Commutative Ring Theory Cambridge Studies in Advanced Mathematics, vol. 8. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  19. Mehta, M.L.: Basic sets of invariant polynomials for finite reflection groups. Comm. Algebra 16(5), 1083–1098 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Moreau, A.: Quelques propriétés de l’indice dans une algèbre de Lie semi-simple, Ph.D. thesis (2006). http://www.institut.math.jussieu.fr/theses/2006/moreau/

  21. Panyushev, D.I.: The index of a Lie algebra, the centralizer of a nilpotent element, and the normaliser of the centralizer. Math. Proc. Camb. Philos. Soc. 134, 41–59 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Panyushev, D.I., Yakimova, O.: Parabolic contractions of semisimple Lie algebras and their invariants. Selecta Math. 19(3), 699–717 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Panyushev, D.I., Premet, A., Yakimova, O.: On symmetric invariants of centralizers in reductive Lie algebras. J. Algebra 313, 343–391 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Premet, A.: Special transverse slices and their enveloping algebras. Adv. Math. 170, 1–55 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rosenlicht, M.: A remark on quotient spaces. Anais da Academia brasileira de ciencias 35, 487–489 (1963)

    MathSciNet  MATH  Google Scholar 

  26. Topley, L.: Invariants of centralisers in positive characteristic. J. Algebra 399, 1021–1050 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yakimova, O.: The index of centralisers of elements in classical Lie algebras. Funct. Anal. Appl. 40, 42–51 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yakimova, O.: Centers of centralisers in the classical Lie algebras (preprint). http://www.mccme.ru/~yakimova/center/center (2006)

  29. Yakimova, O.: A counterexample to Premet’s and Joseph’s conjecture. Bull. Lond. Math. Soc. 39, 749–754 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yakimova, O.: Surprising properties of centralisers in classical Lie algebras. Ann. Inst. Fourier (Grenoble) 59(3), 903–935 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank Alexander Premet for his important comments on the previous version of this paper. We also thank the referee for careful reading and thoughtful suggestions. This work was partially supported by the ANR-Project 10-BLAN-0110.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Moreau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charbonnel, JY., Moreau, A. The symmetric invariants of centralizers and Slodowy grading. Math. Z. 282, 273–339 (2016). https://doi.org/10.1007/s00209-015-1541-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-015-1541-5

Keywords

Mathematics Subject Classification

Navigation