Skip to main content

Advertisement

Log in

The GBC mass for asymptotically hyperbolic manifolds

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The paper consists of two parts. In the first part, by using the Gauss–Bonnet curvature, which is a natural generalization of the scalar curvature, we introduce a higher order mass, the Gauss–Bonnet–Chern mass \(m^{{\mathbb {H}}}_k\), for asymptotically hyperbolic manifolds and show that it is a geometric invariant. Moreover, we prove a positive mass theorem for this new mass for asymptotically hyperbolic graphs and establish a relationship between the corresponding Penrose type inequality for this mass and weighted Alexandrov–Fenchel inequalities in the hyperbolic space \({\mathbb {H}}^n\). In the second part, we establish these weighted Alexandrov–Fenchel inequalities in \({\mathbb {H}}^n\) for any horospherical convex hypersurface \(\Sigma \)

$$\begin{aligned} \int _{\Sigma } V \sigma _{2k-1} d\mu \ge C_{n-1}^{2k-1} \omega _{n-1}{\left( \left( \frac{|\Sigma |}{\omega _{n-1}} \right) ^{\frac{n}{k(n-1)}}+\left( \frac{|\Sigma |}{\omega _{n-1}} \right) ^{\frac{n-2k}{k(n-1)}} \right) }^{k}, \end{aligned}$$

where \(\sigma _{j}\) is the j-th mean curvature of \(\Sigma \subset {\mathbb {H}}^n\), \(V=\cosh r\) and \(|\Sigma |\) is the area of \(\Sigma \). As an application, we obtain an optimal Penrose type inequality for the new mass defined in the first part

$$\begin{aligned} m_{k}^{{\mathbb {H}}} \ge \frac{1}{2^k}{\left( \left( \frac{|\Sigma |}{\omega _{n-1}} \right) ^{\frac{n}{k(n-1)}}+\left( \frac{|\Sigma |}{\omega _{n-1}} \right) ^{\frac{n-2k}{k(n-1)}} \right) }^{k}, \end{aligned}$$

for asymptotically hyperbolic graphs with a horizon type boundary \(\Sigma \), provided that a dominant energy type condition \(\tilde{L}_k\ge 0\) holds. Both inequalities are optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alías, L.J., de Lira, J.H.S., Malacarne, J.M.: Constant higher-order mean curvature hypersurfaces in Riemannian spaces. J. Inst. Math. Jussieu 5(4), 527–562 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andersson, L., Cai, M., Galloway, G.J.: Rigidity and positivity of mass for asymptotically hyperbolic manifolds. Ann. Henri Poincaré 9(1), 1–33 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arnowitt, R., Deser, S., Misner, C.W.: Coordinate invariance and energy expressions in general relativity. Phys. Rev. 2(122), 997–1006 (1961)

    Article  MathSciNet  Google Scholar 

  4. Bartnik, R.: The mass of an asymptotically flat manifold. Commun. Pure Appl. Math. 34, 661–693 (1986)

    Article  MathSciNet  Google Scholar 

  5. Borisenko, A.A., Miquel, V.: Total curvatures of convex hypersurfaces in hyperbolic space. Ill. J. Math. 43, 61–78 (1999)

    MATH  MathSciNet  Google Scholar 

  6. Bonini, V., Qing, J.: A positive mass theorem on asymptotically hyperbolic manifolds with corners along a hypersurface. Ann. Henri Poincaré 9(2), 347–372 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bray, H.L.: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differ. Geom. 59(2), 177–267 (2001)

    MATH  MathSciNet  Google Scholar 

  8. Bray, H.L.: On the positive mass, Penrose, an ZAS inequalities in general dimension, surveys in geometric analysis and relativity. In: Advanced Lectures in Mathematics (ALM), vol. 20, pp. 1–27. International Press, Somerville, MA (2011)

  9. Bray, H.L., Lee, D.A.: On the Riemannian Penrose inequality in dimensions less than eight. Duke Math. J. 148(1), 81–106 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brendle, S.: Hypersurfaces of constant mean curvature in deSitter-Schwarzschild space. arXiv:1105.4273

  11. Brendle, S., Hung, P.-K., Wang, M.-T.: A Minkowski-type inequality for hypersurfaces in the Anti-deSitter-Schwarzschild manifold. arXiv:1209.0669

  12. Burago, Y.D., Zalgaller, V.A.: Geometric Inequalities. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  13. Caúla, T., de Lima, L.L., Santos, N.L.: Deformation and rigidity results for the \(2k\)-Ricci tensor and the \(2k\)-Gauss–Bonnet curvature. arXiv:math/1208.1801v1

  14. Chang, S.-Y.A., Wang, Y.: On Aleksandrov–Fenchel inequalities for k-convex domains. Milan J. Math. 79(1), 13–38 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cheng, X., Zhou, D.: Rigidity for nearly umbilical hypersurfaces in space forms. arXiv:1208.1786

  16. Chern, S.S.: A simple intrinsic proof of the Gauss–Bonnet formula for closed Riemannian manifolds. Ann. Math. 45(2), 747–752 (1944)

    Article  MATH  MathSciNet  Google Scholar 

  17. Chern, S.S.: On the curvatura integra in a Riemannian manifold. Ann. Math. 46(2), 674–684 (1945)

    Article  MATH  MathSciNet  Google Scholar 

  18. Chruściel, P., Herzlich, M.: The mass of asymptotically hyperbolic Riemannian manifolds. Pac. J. Math. 212(2), 231–264 (2003)

    Article  Google Scholar 

  19. Chruściel, P., Nagy, G.: The mass of spacelike hypersurface in asymptotically anti-de Sitter space-times. Adv. Theor. Math. Phys. 5 697–754 (2002). arXiv:gr-qc/0110014

  20. Crisóstomo, J., Troncoso, R., Zanelli, J.: Black hole scan. Phys. Rev. D 62(8), 084013 (2000). (3)

    Article  MathSciNet  Google Scholar 

  21. Dahl, M., Gicquaud, R., Sakovich, A.: Penrose type inequalities for asymptotically hyperbolic graphs. Ann. Henri Poincaré (2012). doi:10.1007/s00023-012-0218-4

  22. Dai, X.: A positive mass theorem for spaces with asymptotic SUSY compactification. Commun. Math. Phys. 244, 335–345 (2004)

    Article  MATH  Google Scholar 

  23. de Lima, L.L., Girão, F.: The ADM mass of asymptotically flat hypersurfaces. arXiv:1108.5474

  24. de Lima, L.L., Girão, F.: Positive mass and Penrose type inequalities for asymptotically hyperbolic hypersurfaces. arXiv:1201.4991

  25. de Lima, L.L., Girão, F.: An Alexandrov–Fenchel-type inequality in hyperbolic space with an application to a Penrose inequality. arXiv:1209.0669

  26. Deser, S., Tekin, B.: Gravitational energy in quadratic-curvature gravities. Phys. Rev. Lett. 89, 101101 (2002)

    Article  MathSciNet  Google Scholar 

  27. Deser, S., Tekin, B.: Energy in generic higher curvature gravity theories. Phys. Rev. D 75, 084032 (2003)

    Article  MathSciNet  Google Scholar 

  28. Gallego, E., Solanes, G.: Integral geometry and geometric inequalities in hyperbolic space. Differ. Geom. Appl. 22, 315–325 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ge, Y., Wang, G., Wu, J.: A new mass for asymptotically flat manifolds. Adv. Math. 266, 84–119 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  30. Ge, Y., Wang, G., Wu, J.: The Gauss–Bonnet–Chern mass of conformally flat manifolds. IMRN. 2014(17), 4855–4878 (2014)

    MATH  MathSciNet  Google Scholar 

  31. Ge, Y., Wang, G., Wu, J.: Hyperbolic Alexandrov–Fenchel quermassintegral inequalities I. arXiv:1303.1714

  32. Ge, Y., Wang, G., Wu, J.: Hyperbolic Alexandrov–Fenchel quermassintegral inequalities II. J. Differ. Geom. 98(2), 237–260 (2014)

    MATH  MathSciNet  Google Scholar 

  33. Ge, Y., Wang, G., Wu, J.: The GBC mass for asymptotically hyperbolic manifolds. Announc. C. R. Math. Acad. Sci. Paris 352(2), 147–151 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  34. Gerhardt, C.: Inverse curvature flows in hyperbolic space. J. Differ. Geom. 89(3), 487–527 (2011)

    MATH  MathSciNet  Google Scholar 

  35. Guan, P.: Curvature measures, isoperimetric type inequalities and fully nonlinear PDES. In: Gutiérrez CE, Lanconelli E (eds.) Fully Nonlinear PDEs in Real and Complex Geometry and Optics. Lecture Notes in Mathematics 2087, pp. 47–94. Springer, Switzerland (2014)

  36. Guan, P., Li, J.: The quermassintegral inequalities for k-convex starshaped domains. Adv. Math. 221, 1725–1732 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  37. Guan, P., Li, J.: A mean curvature flow in space forms. IMRN (to appear)

  38. Guan, P., Li, J.: An inverse curvature type hypersurfaces flow in space forms (2013, unpublished)

  39. Herzlich, M.: A Penrose-like inequality for the mass of Riemannian asymptotically flat manifolds. Commun. Math. Phys. 188, 121–133 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  40. Herzlich, M.: Mass formulae for asymptotically hyperbolic manifolds, AdS/CFT correspondence: Einstein metrics and their conformal boundaries. In: Biquard O (ed.) IRMA Lectures in Mathematical and Theoretical Physics, vol. 8, pp. 103–121. Eur. Math. Soc., Zürich 103–121 (2005)

  41. Huang, L.-H., Wu, D.: The equality case of the Penrose inequality for asymptotically flat graphs. arXiv:1205.2061

  42. Huang, L.-H., Wu, D.: Hypersurfaces with nonnegative scalar curvature. J. Differ. Geom. 95(2), 249–278 (2013)

    MATH  Google Scholar 

  43. Huisken, G.: Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20, 237–266 (1984)

    MATH  MathSciNet  Google Scholar 

  44. Huisken, G.: (unpublished)

  45. Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59, 353–437 (2001)

    MATH  MathSciNet  Google Scholar 

  46. Labbi, M.L.: On (\(2k\))-minimal submanifolds. Result. Math. 52, 323–338 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  47. Lam, M.-K.G.: The graph cases of the Riemannian positive mass and Penrose inequality in all dimensions. arXiv:1010.4256

  48. Lanczos, C.: A remarkable property of the Riemann–Christoffel tensor in four dimensions. Ann. Math. 39(4), 842–850 (1938). (2)

    Article  MathSciNet  Google Scholar 

  49. Lee, D., Neves, A.: The Penrose inequality for asymptotically locally hyperbolic spaces with nonpositive mass. arXiv:1310.3002 (preprint)

  50. Li, Y., Nguyen, L.: A generalized mass involving higher order symmetric function of the curvature tensor. Ann. Henri Poincaré 14(7), 1733–1746 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  51. Li, H., Wei, Y., Xiong, C.: A geometric ineqality on hypersurface in hyperbolic space. arXiv:1211.4109

  52. Lohkamp, J.: The higher dimensional positive mass theorem I. arXiv:0608795

  53. Lovelock, D.: The Einstein tensor and its generalizations. J. Math. Phys. 12, 498–501 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  54. Mars, M.: Topical review: present status of the Penrose inequality. Class. Quantum Gravity 26(19), 193001 (2009)

    Article  MathSciNet  Google Scholar 

  55. Miao, P.: Positive mass theorem on manifolds admitting corners along a hypersurface. Adv. Theor. Math. Phys. 6(6), 1163–1182 (2002)

    MathSciNet  Google Scholar 

  56. Michel, B.: Geometric invariance of mass-like asymptotic invariants. J. Math. Phys. 52(5), 052504 (2011)

    Article  MathSciNet  Google Scholar 

  57. Neves, A.: Insufficient convergence of inverse mean curvature flow on asymptotically hyperbolic manifolds. J. Differ. Goem. 84, 191–229 (2010)

    MATH  MathSciNet  Google Scholar 

  58. Parker, T., Taubes, C.: On Witten’s proof of the positive energy theorem. Commun. Math. Phys. 84, 223–238 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  59. Patterson, E.M.: A class of critical Riemannian metrics. J. Lond. Math. Soc. 23(2), 349–358 (1981). (2)

    Article  MATH  Google Scholar 

  60. Reilly, R.C.: On the Hessian of a function and the curvatures of its graph. Michigan Math. J. 20, 373–383 (1973)

    MATH  MathSciNet  Google Scholar 

  61. Reilly, R.C.: Variational properties of functions of the mean curvatures for hypersurfaces in space forms. J. Differ Geom. 8, 465–477 (1973)

    MATH  MathSciNet  Google Scholar 

  62. Rivin, I., Schlenker, J.-M.: On the Schlafli differential formula. arXiv:math/0001176

  63. Santaló, L.: Integral Geometry and Geometric Probability. Cambridge Mathematical Library, Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  64. Schmidt, E.: Die isoperimetrischen Ungleichungen auf der gewöhnlichen Kugel und für Rotationskörper im n-dimensionalen sphärischen Raum. Ger. Math. Z. 46, 743–794 (1940)

    Article  Google Scholar 

  65. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory. Cambridge University, Cambridge (1993)

    Book  MATH  Google Scholar 

  66. Schoen, R.: On the high dimensional positive mass theorem. Talk at the simons center for geometry and physics (2009)

  67. Schoen, R., Yau, S.T.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65, 45–76 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  68. Schoen, R., Yau, S.T.: Conformally flat manifolds, Kleinian groups and scalar curvature. Invent. math. 92

  69. Schwartz, F.: A volumetric Penrose inequality for conformally flat manifolds. Ann. Henri Poincaré 12(1), 67–76 (2011)

    Article  MATH  Google Scholar 

  70. Shi, Y., Tam, T.-F.: Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature. J. Differ. Geom. 62, 79–125 (2002)

    MATH  MathSciNet  Google Scholar 

  71. Solanes, G.: Integral geometry and the Gauss–Bonnet theorem in constant curvature spaces. Trans. Am. Math. Soc. 358(3), 1105–1115 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  72. Wang, G., Xia, C.: Isoperimetric type problems and Alexandrov–Fenchel type inequalities in the hyperbolic space. Adv. Math. 259, 532–556 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  73. Wang, X.: Mass for asymptotically hyperbolic manifolds. J. Differ. Geom. 57, 273–299 (2001)

    MATH  Google Scholar 

  74. Willa, A.: Dimensionsabhängige Relationen für den Krümmungstensor und neue Klassen von Einstein- und Spuereinsteinräumen. Diss ETH Nr. 14026, Zürich (2001)

  75. Witten, E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80, 381–402 (1981)

    Article  MATH  Google Scholar 

  76. Zhang, W.: Lectures on Chern–Weil theory and Witten deformations. Nankai Tracts in Mathematics, 4th edn. World Scientific Publishing Co., Inc., River Edge, NJ (2001)

    Google Scholar 

  77. Zhang, X.: A definition of total energy-momenta and the positive mass theorem on asymptotically hyperbolic 3-manifolds. I. Commun. Math. Phys. 249(3), 529–548 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxin Ge.

Additional information

This project is partly supported by SFB/TR71 “Geometric partial differential equations” of DFG.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Y., Wang, G. & Wu, J. The GBC mass for asymptotically hyperbolic manifolds. Math. Z. 281, 257–297 (2015). https://doi.org/10.1007/s00209-015-1483-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-015-1483-y

Keywords

Mathematics Subject Classification

Navigation