Skip to main content
Log in

Low lying zeros of Artin \(L\)-functions

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study the one-level density of Artin \(L\)-functions twisted by a cuspidal automorphic representation under the strong Artin conjecture and certain conjectures on counting number fields. Our result is unconditional for \(S_3\)-fields. For a non-self dual \(\pi \), it agrees with the unitary type \(\text {U}\). For a self-dual \(\pi \) whose symmetric square \(L\)-function \(L(s,\pi ,\text {Sym}^2)\) has a pole at \(s=1\), it agrees with the symplectic type \(\text {Sp}\). For a self-dual \(\pi \) whose exterior square \(L\)-function \(L(s,\pi ,\wedge ^2)\) has a pole at \(s=1\), the possible symmetry types are \(\text {O}\), \(\text {SO(even)}\), or \(\text {SO(odd)}\). When \(\pi =1\), for \(S_3\) cubic fields and \(S_4\) quartic fields, we rediscover Yang’s one-level density result in his thesis (Yang 2009). In the last section, we compute the one-level density of several families of Artin \(L\)-functions arising from parametric polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barthel, L., Ramakrishnan, D.: A nonvanishing result for twists of \(L\)-functions of \(GL(n)\). Duke Math. J. 74, 681–700 (1994)

    Article  MATH  Google Scholar 

  2. Belabas, K., Bhargava, M., Pomerance, C.: Error estimates for the Davenport-Heilbronn theorems. Duke Math. J. 153(1), 173–210 (2010)

    Article  MATH  Google Scholar 

  3. Calegari, F.: The Artin Conjecture for some \(S_5\)-extensions. Math. Ann. 356(1), 191–207 (2013)

    Article  MATH  Google Scholar 

  4. Cho, P.J.: The strong Artin conjecture and number fields with large class numbers. Quart. J. Math. 65 (2014), 101–111

  5. Cho, P.J., Kim, H.H.: Weil’s theorem on rational points over finite fields and Artin \(L\)-functions, Automorphic Representations and \(L\)-functions. Conference Proceedings of Tata Institute (2013), pp. 93–117

  6. Cho, P.J., Kim, H.H.: Application of the strong Artin conjecture to class number problem. Can. J. Math. 65, 1201–1216 (2013)

    Article  MATH  Google Scholar 

  7. Cho, P.J., Kim, H.H.: Logarithmic derivatives of Artin \(L\)-functions. Compos. Math. 149, 568–586 (2013)

  8. Cho, P.J., Kim, H.H.: \(n\)-level densities of Artin \(L\)-functions. Int. Math. Res. Not. doi:10.1093/imrn/rnu186

  9. Cho, P.J., Kim, H.H.: Central limit theorem for Artin \(L\)-functions. (preprint)

  10. Davenport, H.: Multiplicative Number Theory, Graduate Texts in Mathematics, vol. 74. Springer, New York (1980)

    Book  Google Scholar 

  11. Gao, P., Zhao, L.: One level density of low-lying zeros of families of \(L\)-functions. Compos. Math. 147, 1–18 (2011)

    Article  MATH  Google Scholar 

  12. Güloğlu, A.M.: Low-lying zeros of symmetric powers of L-functions. Int. Math. Res. Not. 2005(9) 517–550 (2005)

  13. Hooley, C.: A note on square-free numbers in arithmetic progressions. Bull. Lond. Math. Soc. 7, 133–138 (1975)

    Article  MATH  Google Scholar 

  14. Iwaniec, H., Kowalski, E.: Analytic Number Theory, American Mathematical Society Colloquium Publications, vol. 53. American Mathematical Society, Providence (2004)

    Google Scholar 

  15. Iwaniec, H., Luo, W., Sarnak, P.: Low lying zeros of families of \(L\)-functions. Publ. Math. Inst. Hautes Études Sci. 91, 55–131 (2000)

    Article  MATH  Google Scholar 

  16. James, G., Liebeck, M.: Representations and Characters of Groups. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  17. Katz, N., Sarnak, P.: Random Matrices, Frobenius Eigenvalues and Monodromy. American Mathematical Society Colloquium Publications, vol. 45. American Mathematical Society, Providence (1999)

  18. Malle, G.: On the distribution of Galois groups II. Exp. Math. 13(2), 129–135 (2004)

    Article  MATH  Google Scholar 

  19. Miller, S.J.: One- and two-level densities for rational families of elliptic curves: evidence for the underlying group symmetries. Compos. Math. 140, 952–992 (2004)

    Article  MATH  Google Scholar 

  20. Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers, 2nd edn. Springer, Berlin (1990)

    MATH  Google Scholar 

  21. Pappalardi, F.: On Artin’s Conjecture for Primitive Roots. Thesis at McGill University, (1993)

  22. Prachar, K.: Über die kleinste quadratfreie Zahl einer arithmetischen Reihe. Monatsh. Math. 62, 173–176 (1958)

    Article  MATH  Google Scholar 

  23. Rubinstein, M.: Low-lying Zeros of \(L\)-functions and Random Matrix Theory. Duke Math. J. 109(1), 147–181 (2001)

    Article  MATH  Google Scholar 

  24. Shankar, A., Tsimerman, J.: Counting \(S_5\)-fields with a power saving error term. Forum Math. Sigma 2, e13 (2014). doi:10.1017/fms.2014.10

  25. Taniguchi, T., Thorne, F.: Secondary Terms in counting functions for cubic fields. Duke Math. J. 162, 2451–2508 (2013)

    Article  MATH  Google Scholar 

  26. Yang, A.: Distribution Problems Associated To Zeta Functions and Invariant Theory. Ph.D. Thesis at Princeton University (2009)

Download references

Acknowledgments

We thank the referee who brought our attention to Yang’s thesis [26] and provided the proof of Proposition 5.1 and many comments to improve this paper. We thank S. J. Miller for his comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Cho.

Additional information

Henry H. Kim partially supported by an NSERC Grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, P.J., Kim, H.H. Low lying zeros of Artin \(L\)-functions. Math. Z. 279, 669–688 (2015). https://doi.org/10.1007/s00209-014-1387-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-014-1387-2

Mathematics Subject Classification

Navigation