Skip to main content
Log in

Locally compact convergence groups and \(n\)-transitive actions

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

All \(\sigma \)-compact, locally compact groups acting sharply \(n\)-transitively and continuously on compact spaces \(M\) have been classified, except for \(n=2,3\) when \(M\) is infinite and disconnected. We show that no such actions exist for \(n=2\) and that these actions for \(n=3\) coincide with the action of a hyperbolic group on a space equivariantly homeomorphic to its hyperbolic boundary. We further characterize non-compact groups acting 3-properly and transitively on infinite compact sets as non-elementary boundary-transitive hyperbolic groups, which in turn were recently studied by Caprace, de Cornulier, Monod and Tessera. As an important tool, we generalize Bowditch’s topological characterization of discrete hyperbolic groups to locally compact hyperbolic groups. Finally, we show that if a locally compact group acts continuously, 4-properly and 4-cocompactly on a locally connected metrizable compactum M, then M has a global cut point, which is in sharp contrast to the \(3\)-proper, \(3\)-cocompact case due to the solution of Bowditch’s cut-point conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arens, R.: Topologies for homeomorphism groups. Am. J. Math. 68, 593–610 (1946)

  2. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319. Springer, Berlin (1999)

    Google Scholar 

  3. Bass, H., Kulkarni, R.: Uniform tree lattices. J. Am. Math. Soc. 3(4), 843–902 (1990)

  4. Bass, H., Lubotzky, A.: Tree Lattices, Progress in Mathematics, vol. 176, Birkhäuser Boston Inc, Boston (2001). With appendices by Bass, L. Carbone, Lubotzky, G. Rosenberg and J. Tits

  5. Bestvina, M., Mess, G.: The boundary of negatively curved groups. J. Am. Math. Soc. 4(3), 469–481 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourbaki, N.: Éléments de mathématique. Fascicule XXIX. Livre VI: Intégration. Chapitre 7: mesure de Haar. Chapitre 8: convolution et représentations, Actualités Scientifiques et Industrielles, No. 1306, Hermann, Paris (1963)

  7. Bowditch, B.H.: A topological characterisation of hyperbolic groups. J. Am. Math. Soc. 11(3), 643–667 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bowditch, B.H.: Connectedness properties of limit sets. Trans. Am. Math. Soc. 351(9), 3673–3686 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bowditch, B.H.: Convergence Groups and Configuration Spaces, Geometric Group Theory Down Under (Canberra: de Gruyter 1996), pp. 23–54. Berlin (1999)

  10. Caprace, P.-E., de Cornulier, Y., Monod, N., Tessera, R.: Amenable hyperbolic groups. J. Eur. Math. Soc. (to appear)

  11. Caprace, P.-E., De Medts, T.: Trees, contraction groups, and Moufang sets. Duke Math. J. 162(13), 2413–2449 (2013)

  12. Casson, A., Jungreis, D.: Convergence groups and Seifert fibered \(3\)-manifolds. Invent. Math. 118(3), 441–456 (1994)

  13. Cornulier, Y.: On the quasi-isometric classification of focal hyperbolic groups, (2012, preprint). http://arxiv.org/abs/1212.2229v1

  14. Gabai, D.: Convergence groups are Fuchsian groups. Ann. Math. (2) 136(3), 447–510 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ghys, É., de la Harpe, P. (eds.): Sur les Groupes Hyperboliques d’après Mikhael Gromov, Progress in Mathematics, vol. 83, Birkhäuser Boston Inc, Boston (1990). Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, (1988)

  16. Gerasimov, V.: Expansive convergence groups are relatively hyperbolic. Geom. Funct. Anal. 19(1), 137–169 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gromov, M.: Hyperbolic Groups, Essays in Group Theory, Mathematical Sciences Research Institute Publications, vol. 8, pp. 75–263. Springer, New York (1987)

  18. Hinkkanen, A.: Abelian and nondiscrete convergence groups on the circle. Trans. Am. Math. Soc. 318(1), 87–121 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jordan, C.: Recherches sur les substitutions. J. Math. Pures Appl. 17(2), 351–363 (1872)

    MATH  Google Scholar 

  20. Kerby, W.: On Infinite Sharply Multiply Transitive Groups, Vandenhoeck and Ruprecht, Göttingen (1974). Hamburger Mathematische Einzelschriften. Neue Folge, Heft 6

  21. Kakutani, S., Kodaira, K.: Über das Haarsche Mass in der lokal bikompakten Gruppe. Proc. Imp. Acad. Tokyo 20, 444–450 (1944)

  22. Kramer, L.: Two-transitive Lie groups. J. Reine Angew. Math. 563, 83–113 (2003)

  23. Mangesh, G.: Murdeshwar, General Topology, A Halsted Press Book. Wiley, New York (1983)

    Google Scholar 

  24. Nevo, A.: A structure theorem for boundary-transitive graphs with infinitely many ends. Isr. J. Math. 75(1), 1–19 (1991)

  25. Serre, J.-P.: Trees. Springer, Berlin (1980). Translated from the French by John Stillwell

  26. Swarup, G.A.: On the cut point conjecture. Electron. Res. Announc. Am. Math. Soc. 2(2), 98–100 (electronic) (1996)

  27. Tits, J.: Généralisations des groupes projectifs basées sur leurs propriétés de transitivité. Acad. R. Belgique. Cl. Sci. Mém. Coll. \(8^\circ \) 27(2), 115 (1952)

  28. Tits, J.: Sur les groupes doublement transitifs continus. Comment. Math. Helv. 26, 203–224 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tits, J.: Sur certaines classes d’espaces homogènes de groupes de Lie. Acad. R. Belg. Cl. Sci. Mém. Coll. \(8^\circ \) 29(3), 268 (1955)

  30. Tits, J.: Sur le groupe des automorphismes d’un arbre, Essays on topology and related topics (Mémoires dédiés à Georges de Rham), pp. 188–211. Springer, New York (1970)

    Google Scholar 

  31. Tukia, P.: Homeomorphic conjugates of Fuchsian groups. J. Reine Angew. Math. 391, 1–54 (1988)

  32. Tukia, P.: Conical limit points and uniform convergence groups. J. Reine Angew. Math. 501, 71–98 (1998)

  33. Yaman, A.: Proper cocompact actions on configuration spaces (2003, preprint)

  34. Zassenhaus, H.: Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen. Abh. Math. Sem. Hambg. 11, 17–40 (1936)

    Article  MathSciNet  Google Scholar 

  35. Zassenhaus, H.: Über endliche Fastkörper. Abh. Math. Sem. Hambg 11, 187–220 (1936)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Pierre-Emmanuel Caprace for suggesting the problem, as well as for helpful discussions. The authors also thank him and Ralf Köhl for motivating discussions which lead to Theorem D. We also thank a referee for many interesting comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Dreesen.

Additional information

The first author is a Postdoctoral Researcher of the F.R.S.-FNRS (Belgium).

The major part of this work was conducted while the second author was staying at the Université cathologique de Louvain in Louvain-la-Neuve. He gratefully acknowledges the support of the F.R.S.-FNRS (Belgium), Grant F.4520.11. Currently, the second author is a Marie Curie Intra-European Fellow within the 7th European Community Framework Programme.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carette, M., Dreesen, D. Locally compact convergence groups and \(n\)-transitive actions. Math. Z. 278, 795–827 (2014). https://doi.org/10.1007/s00209-014-1334-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-014-1334-2

Keywords

Mathematics Subject Classification (2010)

Navigation