Skip to main content
Log in

Geodesic flows and Neumann systems on Stiefel varieties: geometry and integrability

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study integrable geodesic flows on Stiefel varieties V n,r  = SO(n)/SO(nr) given by the Euclidean, normal (standard), Manakov-type, and Einstein metrics. We also consider natural generalizations of the Neumann systems on V n,r with the above metrics and proves their integrability in the non-commutative sense by presenting compatible Poisson brackets on (T * V n,r )/SO(r). Various reductions of the latter systems are described, in particular, the generalized Neumann system on an oriented Grassmannian G n,r and on a sphere S n−1 in presence of Yang–Mills fields or a magnetic monopole field. Apart from the known Lax pair for generalized Neumann systems, an alternative (dual) Lax pair is presented, which enables one to formulate a generalization of the Chasles theorem relating the trajectories of the systems and common linear spaces tangent to confocal quadrics. Additionally, several extensions are considered: the generalized Neumann system on the complex Stiefel variety W n,r  = U(n)/U(nr), the matrix analogs of the double and coupled Neumann systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams M.R., Harnad J., Previato E.: Isospectral Hamiltonian flows in finite and infinite dimensions. I. Generalized Moser systems and moment maps into loop algebras. Commun. Math. Phys. 117(3), 451–500 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adams M.R., Harnad J., Hurtubise J.: Isospectral Hamiltonian flows in finite and infinite dimensions. II. Integration of flows. Commun. Math. Phys. 134(3), 555–585 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical aspects of classical and celestial mechanics. In: Itogi Nauki i Tekhniki. Sovr. Probl. Mat. Fundamental’nye Napravleniya, vol. 3, VINITI, Moscow 1985 (Russian) [English transl.: Encyclopadia of Math. Sciences. vol. 3. Springer-Verlag, Berlin (1989)]

  4. Arvanitoyeorgos, A., Dzhepko, V.V., Nikonorov, Yu.G.: Invariant Einstein metrics on some homogeneous spaces of classical Lie groups. Can. J. Math. 61(6), 1201–1213 (2009). arXiv: math/0612504 [math.DG].

    Google Scholar 

  5. Besse A.: Einstein Manifolds, A Series of Modern Surveys in Mathematics. Springer, Berlin (1987)

    Google Scholar 

  6. Bloch A.M., Crouch P.E., Marsden J.E., Ratiu T.S.: The symmetric representation of the rigid body equations and their discretization. Nonlinearity 15, 1309–1341 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bloch A.M., Crouch P.E., Sanyal A.K.: A variational problem on Stiefel manifolds. Nonlinearity 19, 2247–2276 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bogoyavlenski O.I.: New integrable problem of classical mechanics. Commun. Math. Phys. 94, 255–269 (1984)

    Article  Google Scholar 

  9. Bolsinov, A.V.: Compatible Poisson brackets on Lie algebras and the completeness of families of functions in involution. Izv. Acad. Nauk SSSR, Ser. matem. 55(1), 68–92 (1991) (Russian) [English translation: Math. USSR-Izv. 38(1), 69–90 (1992)]

  10. Bolsinov, A.V., Jovanović, B.: Integrable geodesic flows on homogeneous spaces. Matem. Sbornik 192(7),21–40 (2001) (Russian) [English translation: Sb. Mat. 192(7–8), 951–968 (2001)]

    Google Scholar 

  11. Bolsinov, A.V., Jovanović, B.: Non-commutative integrability, moment map and geodesic flows. Annals of Global Analysis and Geometry 23(4), 305–322 (2003). arXiv: math-ph/0109031.

  12. Bolsinov A.V., Jovanović B.: Complete involutive algebras of functions on cotangent bundles of homogeneous spaces. Math. Z 246(1-2), 213–236 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bolsinov, A.V., Jovanović, B.: Magnetic Flows on Homogeneous Spaces, Com. Mat. Helv. 83(3), 679–700 (2008). arXiv: math-ph/0609005.

  14. Brailov, A.V.: Construction of complete integrable geodesic flows on compact symmetric spaces. Izv. Acad. Nauk SSSR, Ser. matem. 50(2), 661–674 (1986) (Russian) [English translation: Math. USSR-Izv. 50(4), 19–31 (1986)]

  15. Chasles M.: Les lignes géodésiques et les lignes de courbure des surfaces du segond degré. J. Math. 11, 5–20 (1846)

    Google Scholar 

  16. Dirac P.A.: On generalized Hamiltonian dynamics. Can. J. Math. 2(2), 129–148 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dragović, V., Gajić B., Jovanović B.: Singular Manakov flows and geodesic flows on homogeneous spaces, transform. Groups 14(3), 513–530 (2009). arXiv:0901.2444 [math-ph]

    Google Scholar 

  18. Dubrovin, B.A., Krichever, I.M., Novikov, S.P.: Integrable Systems I. In: Itogi Nauki i Tekhniki. Sovr.Probl.Mat. Fund.Naprav. vol. 4, VINITI, Moscow 1985 (Russian) [English transl.: Encyclopaedia of Math. Sciences. vol. 4, 173–280 (1989) Springer, Berlin]

  19. Efimov D.I.: The magnetic geodesic flows on a homogeneous symplectic manifold. Siberian Math. J. 46(1), 83–93 (2005)

    Article  MathSciNet  Google Scholar 

  20. Fedorov Yu.N.: Integrable systems, Lax representation and confocal quadrics. Am. Math. Soc. Transl. 168(2), 173–199 (1995)

    Google Scholar 

  21. Fedorov Yu.N.: Integrable flows and Backlund transformations on extended Stiefel varieies with application to the Euler top on the Lie group SO(3). J. Non. Math. Phys. 12(2), 77–94 (2005)

    Article  MATH  Google Scholar 

  22. Fedorov, Yu.N., Jovanović, B.: Nonholonomic LR systems as generalized Chaplygin systems with an invariant measure and geodesic flows on homogeneous spaces. J. Nonlinear Sci. 14(4), 341–381 (2004). arXiv: math-ph/0307016

    Google Scholar 

  23. Fedorov, Yu.N., Jovanović B.: Algebro-geometric description of continious and discrete Neumann systems on Stiefel varieties as a matrix generalization of Jacobi-Mumford systems (in preparation)

  24. Flaschka H.: Towards an algebro-geometric interpretation of the Neumann system. Tohoku Math. J. (2) 36(3), 407–426 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  25. Griffits F., Harris J.: Principles of algebraic geometry. Wiley, New York (1978)

    Google Scholar 

  26. Guillemin V., Sternberg S.: Symplectic techniques in physics. Cambridge University press, Cambridge (1984)

    MATH  Google Scholar 

  27. Jensen G.: Einstein metrics on principal fiber bundles. J. Diff. Geom. 8, 599–614 (1973)

    MATH  Google Scholar 

  28. Kapustin, S.: The Neumann system on Stiefel varieties. Preprint (1992) (Russian)

  29. Kobayashi S., Nomizu K.: Foundation of Differential Geometry, vol. II, pp. 468. Willey, New York (1969)

    Google Scholar 

  30. Knörrer H.: Geodesics on quadrics and a mechanical problem of C.Neumann. J. Reine Angew. Math. 334, 69–78 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kummer M.: On the construction of the reduced phase space of a Hamiltonian system with symmetry. Indiana Univ. Math. J. 30, 281–291 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kuznetsov, V.B.: Isomorphism of an n-dimensional Neumann system and an n-site Gaudin magnet. (Russian) Funktsional. Anal. i Prilozhen. 26(4), 88–90 (1992) (Russian)[translation in Funct. Anal. Appl. 26(4), 302–304 (1992)]

  33. Manakov S.V.: Note on the integrability of the Euler equations of n–dimensional rigid body dynamics. Funkts. Anal. Prilozh. 10(4), 93–94 (1976) (Russian)

    MathSciNet  MATH  Google Scholar 

  34. Mikityuk, I.V.: Integrability of the Euler equations associated with filtrations of semisimple Lie algebras. Matem. Sbornik 125(167) No. 4 (1984) (Russian) [English translation: Math. USSR Sbornik 53(2), 541–549 (1986)]

  35. Moser, J.: Geometry of quadric and spectral theory. In: Chern Symposium 1979, pp. 147–188. Springer, Berlin (1980)

  36. Moser, J.: Various aspects of integrable Hamiltonian systems. Dynamical systems (C.I.M.E. Summer School, Bressanone, 1978). In: Progr. Math. vol. 8, pp. 233–289. Birkhuser, Boston (1980)

  37. Mumford D.: Tata Lectures on Theta. Birkhaüser, Boston (1984)

    MATH  Google Scholar 

  38. Mishchenko, A.S., Fomenko, A.T.: Generalized Liouville method of integration of Hamiltonian systems. Funkts. Anal. Prilozh. 12(2), 46–56 (1978) (Russian) [English translation: Funct. Anal. Appl. 12, 113–121 (1978)]

  39. Nekhoroshev, N.N.: Action-angle variables and their generalization. Tr. Mosk. Mat. O.-va. 26, 181–198 (1972) (Russian) [English translation: Trans. Mosc. Math. Soc. 26, 180–198 (1972)]

  40. Neumann C.: De probleme quodam mechanico, quod ad primam integralium ultra-ellipticoram classem revocatum. J. Reine Angew. Math. 56 (1859)

  41. Perelomov, A.M.: Some remarks on the integrability of the equations of motion of a rigid body in an ideal fluid, Funkt. Anal. Prilozh 15(2), 83–85 (1981) (Russian) [English translation: Funct. Anal. Appl. 15, 144–146 (1981)]

  42. Ratiu T.: The C Neumann problem as a completely integrable system on an adjoint orbit. Trans. Am. Math. Soc. 264(2), 321–329 (1981)

    MathSciNet  MATH  Google Scholar 

  43. Reyman, A.G.: Integrable Hamiltonian systems connected with graded Lie algebras, Zap. Nauchn. Semin. LOMI AN SSSR 95, 3–54 (1980) (Russian) [English translation: J. Sov. Math. 19, 1507–1545 (1982)]

  44. Reyman, A.G., Semonov-Tian-Shanski, M.A.: Group theoretical methods in the theory of finite dimensional integrable systems. In: Dynamical systems VII Itogi Nauki i Tekhniki. Sovr. Probl. Mat. Fund. Naprav. vol.16, VINITI, Moscow (1987) (Russian) [English transl.: Encyclopaedia of Math.Sciences, vol. 16, Springer (1994)]

  45. Saksida P.: Nahm’s equations and generalizations of the Neumann system. Proc. Lond. Math. Soc. 78(3), 701–720 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  46. Saksida P.: Integrable anharmonic oscilators on spheres and hyperbolic spaces. Nonlinearity 14, 977–994 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  47. Suris Y.B.: The problem of integrable discretization: Hamiltonian approach. In: Progress in Mathematics, vol. 219. Birkhuser Verlag, Basel (2003)

    Book  Google Scholar 

  48. Thimm A.: Integrable geodesic flows on homogeneous spaces. Ergod. Th. Dynam. Syst. 1, 495–517 (1981)

    MathSciNet  MATH  Google Scholar 

  49. Veselov, A.P.: Finite zone potentials and integrable systems on a sphere with quadratic potential. Funkt. Anal. Prilozh. 14(1), 48–50 (1980). (Russian) [English translation: Funct. Anal. Appl. 14, 37–39 (1980)]

  50. Wojciechowski S.: Integrable one-partical potentials related to the Neumann system and the Jacobi problem of geodesic motion on an ellipsoid. Phys. Lett. A 107, 107–111 (1985)

    Article  MathSciNet  Google Scholar 

  51. Zung N.T.: Torus actions and integrable systems. In: Bolsinov A.V., Fomenko A.T., Oshemkov A.A. (eds.) Topological Methods in the Theory of Integrable Systems, pp. 289–328. Cambridge Scientific Publ., Cambridge. arXive: math.DS/0407455

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri N. Fedorov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorov, Y.N., Jovanović, B. Geodesic flows and Neumann systems on Stiefel varieties: geometry and integrability. Math. Z. 270, 659–698 (2012). https://doi.org/10.1007/s00209-010-0818-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-010-0818-y

Mathematics Subject Classification (2000)

Navigation