Skip to main content
Log in

Infinitesimal deformation of p-adic differential equations on Berkovich curves

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We show that if a differential equation \(\mathscr {F}\) over a quasi-smooth Berkovich curve X has a certain compatibility condition with respect to an automorphism \(\sigma \) of X, then \(\mathscr {F}\) acquires a semi-linear action of \(\sigma \) (i.e. lifting that on X). The compatibility condition forces the automorphism \(\sigma \) to be close to the identity of X, so the above construction applies to a certain class of automorphisms called infinitesimal. This generalizes André and Di Vizio (Astérisqué 1(296):55–111, 2004) and Pulita (Compos. Math. 144(4):867–919, 2008). We also obtain an application to Morita’s p-adic Gamma function, and to related values of p-adic L-functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The terminology quasi-Smooth is that of [20], this corresponds to rig-smooth curves in the rigid analytic setting.

  2. We mean that \(\Lambda _x\subseteq \Gamma _S\) is a simply connected neighborhood of x in \(\Gamma _S\) (no loops), and moreover that \(\Lambda _x\) is a finite disjoint union of segments [xy[ out of x, all incident upon x, such that ]xy[ is the skeleton of a virtual open annulus in X (this is possible since \(\Gamma _S\) is locally finite).

  3. An example is given by an elliptic curve X with good reduction. In this case a weak triangulation of X is given by an individual point \(S=\{x\}\) which is the unique point of X without neighborhoods isomorphic to an analytic domain of the affine line. In this case \(\Gamma _S=S=\{x\}=\Lambda _x\), and the unique open of the \(\Gamma _S\)-covering is \(Y_x=X\). The same happens for \(\mathbb {P}^{1,\mathrm {an}}_K\) with a triangulation \(S=\{x\}\), with x of type 2 or 3.

  4. In this article we do not consider the G-topology (cf. [7, Section 3.3]). Opens of X are subsets of X that are open with respect to the Berkovich topology, coverings are collections of opens of X whose union is X, and sheaves on X are genuine sheaves over this topological space X.

  5. Notice that \(D^+(t,\sigma )\) is allowed to be equal to the individual point \(\{t\}\).

  6. If the residual field \(\widetilde{K}\) has characteristic 0, then \(p=1\) and this condition is always satisfied.

  7. As an example, if \(X=C^-(0;]R_1,R_2[)\) is an open annulus with empty weak triangulation, then condition (ii) asks that there exist unspecified \(\varepsilon _1,\varepsilon _2>0\) such that (4.4) holds for all \(x\in ]x_{0,R_2-\varepsilon _2},x_{0,R_2}[\) and all \(x\in ]x_{0,R_1},x_{0,R_1+\varepsilon _1}[\).

  8. Here \(\Sigma _\Omega :=\{\sigma _\Omega \}_{\sigma \in \Sigma }\), where as usual \(\sigma _\Omega =\sigma \widehat{\otimes } \mathrm {Id}_\Omega \).

  9. This is equivalent to saying that for all point \(g:\mathscr {H}(g)\rightarrow G\) the equation \(\mathscr {F}_{\mathscr {H}(g)}\) is \(\sigma _g\)-compatible.

  10. We recall that this happens if and only if \(\mathcal {R}_{\emptyset }(x_{0,\rho },\sigma )< \mathcal {R}_{\emptyset ,1}(x_{0,\rho },\mathscr {F})\), for all \(\rho \in ]1-\varepsilon ,1[\).

  11. It is a full subcategory of the category of all differential equations.

  12. By an abuse in this statement by the boundary of an open disk we mean its relative boundary in \(\mathbb {A}^{1,\mathrm {an}}_\Omega \), while by the boundary of a closed disk we mean as usual its Shilov Boundary.

  13. Namely the intersections are quasi-Stein, and the matrix of \(\nabla \) is given by \(G=d/dT_1(Y_\chi )\cdot Y_\chi ^{-1}\) (cf. (2.7)). Over an intersection the two matrices of the stratifications differs by multiplication by a matrix killed by \(d/dT_1\), so they furnishes the same G.

  14. Conjecturally every connected analytic domain of \(\mathbb {A}^{1,\mathrm {an}}_K\) is quasi-Stein.

  15. Notice that \(G_{[1]}\), and also \(G_{[n]}\), has a denominator. It belong however to \(M_n(\mathcal {O}(X))\) because \(a\notin X\).

  16. Recall that \(\mathcal {R}^{\sigma _{q,h}}(x)= \mathcal {R}_{S}(x,\sigma _{q,h})\cdot \rho _{S,T}(x)= |(q-1)T+h|(x)\), as in the proof of Lemma 3.3.3.

  17. \(X_{\widehat{K^{\mathrm {alg}}}}\) is a disjoint union of affinoid domains of the type \(Y=D^+(c_0,R_0)-\cup _{i=1}^sD^-(c_i,R_i)\), for which \(\min _{x\in Y} \{\text {Radius of }(D(x,S))\}= \min (R_0,R_1,\ldots ,R_s)\).

  18. By Lemma 6.1.2 this means \(|(q-1)t_x+h|<r(x)\), where r(x) is the radius of D(x) (cf. Definition 1.1.9).

References

  1. André, Y., Vizio, L.D.: \(q\)-difference equations and \(p\)-adic local monodromy. Astérisqué 1(296), 55–111 (2004)

    MathSciNet  MATH  Google Scholar 

  2. André, Y.: Filtrations de type Hasse–Arf et monodromie \(p\)-adique. Invent. Math. 148(2), 285–317 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baldassarri, F.: Continuity of the radius of convergence of differential equations on \(p\)-adic analytic curves. Invent. Math. 182(3), 513–584 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barsky, D.: On morita’s \(p\)-adic gamma function. Math. Proc. Camb. Phil. Soc. 257, 159–169 (1980)

    Google Scholar 

  5. Barsky, D.: Sur la norme de certaines sTries de iwasawa (une dTmonstration analytique \(p\)-adique du thTorFme de ferrero-washington). Groupe de travail d’analyse ultramTtrique Tome 10(1), exp.13, 1–44 (1982–1983)

  6. Berthelot, P.: Cohomologie cristalline des schémas de caractéristique \(p>0\). Lecture Notes in Mathematics, vol. 407. Springer-Verlag, Berlin (1974)

  7. Berkovich, V.G.: Spectral Theory and Analytic Geometry over Non-Archimedean Fields, Mathematical Surveys and Monographs, vol. 33. American Mathematical Society, Providence (1990)

    Google Scholar 

  8. Berthelot, P: Cohomologie rigide et cohomologie rigide à supports propres, Prépublications de l’Université de Rennes 1(96–03), pp. 1–91. http://perso.univrennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf (1996)

  9. Bosch, S., Güntzer, U., Remmert R.: Non-Archimedean Analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 261, Springer-Verlag, Berlin (1984) (A systematic approach to rigid analytic geometry)

  10. Bosch, S., Lütkebohmert, Werner: Stable reduction and uniformization of abelian varieties. I. Math. Ann. 270(3), 349–379 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Baker, M., Rumely, Robert: Potential Theory and Dynamics on the Berkovich Projective Line, Mathematical Surveys and Monographs, vol. 159. American Mathematical Society, Providence (2010)

    Book  MATH  Google Scholar 

  12. Cano, F., et al. (eds.): Équations différentielles et singularités. Astérisque 323, pp. 397–429. Société Mathématique de France, Paris (2009)

  13. Christol, G: Le théorème de turritin \(p\)-adique (version du 11/06/2011), Umpublushed Book (2011)

  14. Christol, G., Mebkhout Z.: Équations différentielles \(p\)-adiques et coefficients \(p\)-adiques sur les courbes, Astérisque 279, 125–183 (2002) (Cohomologies \(p\)-adiques et applications arithmétiques, II)

  15. Chiarellotto, B., Tsuzuki, N.: Logarithmic growth and Frobenius filtrations for solutions of \(p\)-adic differential equations. J. Inst. Math. Jussieu 8(3), 465–505 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chiarellotto, B., Tsuzuki, N.: Log-growth filtration and Frobenius slope filtration of \(F\)-isocrystals at the generic and special points. Doc. Math. 16, 33–69 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Dwork, B., Gerotto, G., Sullivan, F.J.: An introduction to \(G\)-functions. Ann. Math. Stud. vol. 133. Princeton University Press, Princeton (1994)

  18. Diamond, J.: The \(p\)-adic log gamma function and \(p\)-adic euler constants. Trans. Am. Math. Soc. 233, 321–337 (1977)

    MathSciNet  MATH  Google Scholar 

  19. Dickson, L.E.: History of the Theory of Numbers, vol. i, (chapter 3), Chelsea, New York (1952)

  20. Ducros, A.: La structure des courbes analytiques. http://www.math.jussieu.fr/ducros/livre.html. Accessed 12 Feb 2014

  21. Di Vizio, L.: Introduction to \(p\)-adic \(q\)-difference Equations, Geometric Aspects of Dwork Theory. vol. I, II, Walter de Gruyter GmbH & Co. KG, Berlin, pp. 615–675 (2004)

  22. Dwork, B.: On the rationality of the zeta function of an algebraic variety. Am. J. Math. 82, 631–648 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dwork, B: A note on the \(p\)-adic gamma function, Groupe de travail d’analyse ultramTtrique 9, no. 3, exp.J5, J1–J10 (1981–1982)

  24. Grothendieck, A.: Crystals and the de Rham cohomology of schemes, Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam, pp. 306–358 (1968)

  25. Illusie, L.: Complexe cotangent et déformations. II, Lecture Notes in Mathematics, vol. 283, Springer-Verlag, Berlin (1972)

  26. Kashiwara, M.: Representation theory and \(D\)-modules on flag varieties, Astérisque, no. 173–174, 9, 55–109 (1989) (Orbites unipotentes et représentations, III)

  27. Katz, N., Travaux de Dwork, Séminaire Bourbaki, 24ème année (1971/1972), Lecture Notes in Math, vol. 317, Exp. No. 409, pp. 167–200, Springer, Berlin (1973)

  28. Katz, N.M.: Local-to-global extensions of representations of fundamental groups. Ann. Inst. Fourier (Grenoble) 36(4), 69–106 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nicholas, M.: On the calculation of some differential Galois groups. Invent. Math. 87(1), 13–61 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kedlaya, K.S.: A \(p\)-adic local monodromy theorem. Ann. Math. (2) 160(1), 93–184 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kiran, S.: p-adic Differential Equations, Cambridge Studies in Advanced Mathematics, vol. 125. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  32. Kiran, S.: Local and global structure of connections on nonarchimedean curves, arxiv. pp. 1–76. http://arxiv.org/abs/1301.6309 (2013)

  33. Kiehl, R.: Theorem A und Theorem B in der nichtarchimedischen Funktionentheorie. Invent. Math. 2, 256–273 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lazard, M.: Les zéros des fonctions analytiques d’une variable sur un corps valué complet, Inst. Hautes Études Sci. Publ. Math. no. 14, 47–75 (1962)

  35. Liu, Q.: Ouverts analytiques d’une courbe algébrique en géométrie rigide. Ann. Inst. Fourier (Grenoble) 37(3), 39–64 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  36. Le Stum, B.: Rigid Cohomology, Cambridge Tracts in Mathematics, vol. 172. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  37. Le Stum, B., Quirós, A.: Formal confluence of quantum differential operators, arxiv, pp. 1–39. http://arxiv.org/abs/1505.07258 (2015)

  38. Le Stum, B., Quirós, A.: Twisted calculus, arxiv. http://arxiv.org/abs/1503.05022 Accepted for publication in Nagoya Mathematical Journal, pp. 1–35 (2015)

  39. Matsuda, S.: Katz correspondence for quasi-unipotent overconvergent isocrystals. Compos. Math. 134(1), 1–34 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mebkhout, Z.: Analogue \(p\)-adique du théorème de Turrittin et le théorème de la monodromie \(p\)-adique. Invent. Math. 148(2), 319–351 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mumford, D., Fogarty, J., Kirwan, F.: Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin (1994)

  42. Morita, Y.: A \(p\)-adic analogue of the \(\Gamma \)-function, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22, no. 2, 255–266 (1975)

  43. Mumford, D.: Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Published for the Tata Institute of Fundamental Research, Bombay; by Hindustan Book Agency, New Delhi, 2008, With appendices by C. P. Ramanujam and Yuri Manin, Corrected reprint of the second edition (1974)

  44. Monsky, P., Washnitzer, G.: Formal cohomology. I. Ann. Math. (2) 88, 181–217 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  45. Pulita, A., Poineau, J.: The convergence newton polygon of a \(p\)-adic differential equation iii : global decomposition and controlling graphs, arxiv, pp. 1–81. URL :http://arxiv.org/abs/1308.0859 (2013)

  46. Pulita, A., Poineau, J.: The convergence newton polygon of a \(p\)-adic differential equation iv : local and global index theorems, arxiv. http://arxiv.org/abs/1309.3940 pp. 1–44 (2013)

  47. Poineau, J., Pulita, A.: Continuity and finiteness of the radius of convergence of a \(p\)-adic differential equation via potential theory. J. Reine Angew. Math. 707, 125–147 (English) (2015)

  48. Poineau, J., Pulita, A.: The convergence Newton polygon of a \(p\)-adic differential equation. II: Continuity and finiteness on Berkovich curves. Acta Math. 214(2), 357–393 (English) (2015)

  49. Pulita, A.: \(p\)-adic confluence of \(q\)-difference equations. Compos. Math. 144(4), 867–919 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. Pulita, A.: The convergence Newton polygon of a \(p\)-adic differential equation. I: Affinoid domains of the Berkovich affine line. Acta Math. 214(2), 307–355 (2015) (English)

  51. Raynaud, M.: Anneaux locaux henséliens, Lecture Notes in Mathematics, vol. 169, Springer, Berlin (1970)

  52. Robert, A.: A Course in \(p\)-adic Analysis, G.T.M. 198, Springer, Verlag (2000)

  53. Thomason, R.W.: Algebraic K-theory of group scheme actions, Algebraic topology and algebraic \(K\)-theory. Ann. Math. Stud. vol. 113, Princeton University Press, Princeton 1987, 539–563 (1983)

  54. Washington, L.: \(p\)-adic \(l\)-functions and sums of powers. J. Number Theory 69, 50–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are grateful to D. Barsky for suggesting and helpful discussions, and for guidance and advice in the formulas of Sect. 7.4. We also thank Yves André, Gilles Christol, Jeröme Poineau, Bernard Le Stum, Michel Gros, and Bertrand Toen for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Pulita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pulita, A. Infinitesimal deformation of p-adic differential equations on Berkovich curves. Math. Ann. 368, 111–164 (2017). https://doi.org/10.1007/s00208-016-1417-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1417-y

Mathematics Subject Classification

Navigation