Skip to main content
Log in

Gaussian bounds and parabolic Harnack inequality on locally irregular graphs

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

A well known theorem of Delmotte is that Gaussian bounds, parabolic Harnack inequality, and the combination of volume doubling and Poincaré inequality are equivalent for graphs. In this paper we consider graphs for which these conditions hold, but only for sufficiently large balls, and prove a similar equivalence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andres, S., Deuschel, J.-D., Slowik, M.: Invariance principle for the random conductance model in a degenerate ergodic environment. Ann. Probab. 43, 1866–1891 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andres, S., Deuschel, J.-D., Slowik, M.: Harnack inequalities on weighted graphs and some applications to the random conductance model. Probab. Theory Relat. Fields (2016, to appear)

  3. Andres, S., Deuschel, J.-D., Slowik, M.: Heat kernel estimates for random walks with degenerate weights (preprint). arXiv:1412.4338

  4. Barlow, M.T.: Random walk on supercritical percolation clusters. Ann. Probab. 32(4), 3024–3084 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barlow, M.T., Bass, R.F., Chen, Z.-Q., Kassmann, M.: Non-local Dirichlet forms and symmetric jump processes. Trans. Am. Math. Soc. 361, 1963–1999 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barlow, M.T., Bass, R.F., Kumagai, T.: Parabolic Harnack inequality and heat kernel estimates for random walks with long range jumps. Math. Z. 261, 297–320 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barlow, M.T., Grigor’yan, A., Kumagai, T.: On the equivalence of parabolic Harnack inequalities and heat kernel estimates. J. Math. Soc. Japan 64(4), 1091–1146 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Baum, L.E., Katz, M.: Convergence rates in the law of large numbers. Trans. Am. Math. Soc. 120, 108–123 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boukhadra, O., Kumagai, T., Mathieu, P.: Harnack inequalities and local central limit theorem for the polynomial lower tail random conductance model. J. Math. Soc. Japan 67, 1413–1448 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, X.: Pointwise upper estimates for transition probability of continuous time random walks on graphs. Ann. Inst. H. Poincar\(\acute{e}\) Probab. Stat. (2016, to appear)

  11. Coulhon, T., Grigor’yan, A., Zucca, F.: The discrete integral maximum principle and its applications. Tohoku Math. J. 57, 559–587 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Davies, E.B.: Large deviations for heat kernels on graphs. J. Lond. Math. Soc. (2) 47, 65-72 (1993)

  13. Delmotte, T.: Parabolic Harnack inequality and estimates of Markov chains on graphs. Rev. Math. Iberoam. 15(1), 181–232 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Drewitz, A., Ráth, B., Sapozhnikov, A.: On chemical distances and shape theorems in percolation models with long-range correlations. J. Math. Phys. 55, 083307 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fabes, E.B., Stroock, D.W.: A new proof of Moser’s parabolic Harnack inequality via the old ideas of Nash. Arch. Mech. Ration. Anal. 96, 327–338 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Folz, M.: Gaussian upper bounds for heat kernels of continuous time simple random walks. Electron. J. Probab. 16, 1693-1722 (2011, paper 62)

  17. Grigor’yan, A.: The heat equation on noncompact Riemannian manifolds. Math. USSR Sbornik 72, 47–77 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grigor’yan, A.: Gaussian upper bounds for the heat kernel on arbitrary manifolds. J. Differ. Geom. 45, 33–52 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Grigor’yan, A., Telcs, A.: Sub-Gaussian estimates of heat kernels on infinite graphs. Duke Math. J. 109, 452–510 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Grimmett, G.R.: Percolation, 2nd edn. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  21. Jerison, D.: The weighted Poincaré inequality for vector fields satisfying Hormander’s condition. Duke Math. J. 53, 503–523 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kusuoka, S., Zhou, X.Y.: Dirichlet form on fractals: Poincaré constant and resistance. Probab. Theory Related Fields 93, 169–196 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lu, G.: The sharp Poincaré inequality for free vector fields: an endpoint result. Rev. Math. Iberoam. 10, 453–466 (1994)

    Article  MATH  Google Scholar 

  24. Sapozhnikov, A.: Random walks on infinite clusters in models with long range correlations (2014, preprint)

  25. Saloff-Coste, L.: A note on Poincaré, Sobolev, and Harnack inequalities. Int. Math. Res. Notices 2, 27–38 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Saloff-Coste, L., Stroock, D.W.: Operateurs uniformement sous-elliptiques sur les groupes de Lie. J. Funct. Anal. 98, 97–121 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Saloff-Coste, L.: Aspects of Sobolev-Type Inequalities. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  28. Stroock, D.W., Zheng, W.: Markov chain approximations to symmetric diffusions. Ann. Inst. H. Poincaré Probab. Stat. 33, 619–649 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhikov, V.V.: Estimates of the Nash–Aronson type for degenerate parabolic equations. J. Math. Sci. 190, 66–79 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinxing Chen.

Additional information

M. T. Barlow’s research was partially supported by NSERC (Canada). X. Chen’s research was partially supported by China Scholarship Council during the author visiting Department of Mathematics at University of British Columbia in 2012, and NSFC Grant No. 11531001.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barlow, M.T., Chen, X. Gaussian bounds and parabolic Harnack inequality on locally irregular graphs. Math. Ann. 366, 1677–1720 (2016). https://doi.org/10.1007/s00208-016-1373-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1373-6

Mathematics Subject Classification

Navigation