Skip to main content
Log in

Projective compactness and conformal boundaries

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

For complete affine manifolds we treat a recently introduced general notion of compactification based on the projective differential geometry (i.e. geodesic path data) of the given connection. This involves a real parameter called the order of projective compactness; for volume preserving connections, this order is a measure of asymptotic volume growth. Via the Levi-Civita connection, this concept applies to complete pseudo-Riemannian metrics. So projective compactness provides a geometrically motivated alternative to conformal compactification. We study the fundamental links between interior geometry and the embedding of the boundary hypersurface at infinity, and develop the tools that describe the induced geometry on this boundary. We prove that a pseudo-Riemannian metric which is projectively compact of order two admits a certain asymptotic form. This form was known to be sufficient for projective compactness, so the result establishes that it provides an equivalent characterization. From a projectively compact connection on M, one obtains a projective structure on the compactified manifold with boundary \(\overline{M}\). We show this induces a, possibly degenerate, conformal structure on the boundary hypersurface \(\partial M\). We prove that in the case of metrics which are projectively compact of order two this boundary structure is in fact always non-degenerate. We also prove that in this case the metric is necessarily asymptotically Einstein, in a natural sense. Finally, a non-degenerate conformal boundary geometry gives rise to a conformal standard tractor bundle (on the boundary) endowed with a canonical linear connection, and we explicitly describe these in terms of the projective data of the interior geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aharony, O., Gubser, S.S., Maldacena, J.M., et al.: Large \(N\) field theories, string theory and gravity. Phys. Rept. 323, 183–386 (2000)

    Article  MathSciNet  Google Scholar 

  2. Bailey, T.N., Eastwood, M.G., Gover, A.R.: Thomas’s structure bundle for conformal, projective and related structures. Rocky Mt. J. Math. 24, 1191–1217 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Calderbank, D.M.J., Diemer, T.: Differential invariants and curved Bernstein–Gelfand–Gelfand sequences. J. Reine Angew. Math. 537, 67–103 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Čap, A., Gover, A.R.: Tractor calculi for parabolic geometries. Trans. Am. Math. Soc. 354(4), 1511–1548 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Čap, A., Gover, A.R.: Standard tractors and the conformal ambient metric construction. Ann. Glob. Anal. Geom. 24(3), 231–259 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Čap, A., Gover, A.R.: Projective compactifications and Einstein metrics. J. reine Angew. Math. doi:10.1515/crelle-2014-0036 (to appear). arXiv:1304.1869

  7. Čap, A., Gover, A.R.: Scalar curvature and projective compactness. J. Geom. Phys. 98, 475–481 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Čap, A., Gover, A.R., Hammerl, M.: Projective BGG equations, algebraic sets, and compactifications of Einstein geometries. J. Lond. Math. Soc. 86, 433–454 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Čap, A., Gover, A.R., Hammerl, M.: Holonomy reductions of Cartan geometries and curved orbit decompositions. Duke Math. J. 163(5), 1035–1070 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Čap, A., Gover, A.R., Macbeth, H.: Einstein metrics in projective geometry. Geom. Dedicata 168, 235–244 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Čap, A., Slovák, J., Souček, V.: Bernstein–Gelfand–Gelfand sequences. Ann. Math. 154, 97–113 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheng, S.Y., Yau, S.T.: On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman’s equation. Commun. Pure Appl. Math. 33, 507–544 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chruściel, P., Delay, E., Lee, J.M., Skinner, D.N.: Boundary regularity of conformally compact Einstein metrics. J. Differ. Geom. 69, 111–136 (2005)

    MathSciNet  MATH  Google Scholar 

  14. de Haro, S., Skenderis, K., Solodukhin, S.N.: Holographic Reconstruction of Spacetime and Renormalization in the AdS/CFT Correspondence. Commun. Math. Phys. 217, 595–622 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Eastwood, M.G., Matveev, V.: Metric connections in projective differential geometry. In: Symmetries and overdetermined systems of partial differential equations, pp. 339–350, IMA vol. Math. Appl., 144. Springer, New York (2008)

  16. Fefferman, C., Graham, C.R.: Conformal invariants. In: The mathematical heritage of Élie Cartan (Lyon, 1984). Astérisque, Numero Hors Serie, 95–116 (1985)

  17. Fefferman, C., Graham, C.R.: The Ambient Metric. Annals of Mathematics Studies, vol. 178. Princeton University Press (2012)

  18. Frauendiener, J.: Conformal Infinity. Living Rev. Relativ. 7, 2004-1, 82 (2004)

  19. Friedrich, H.: Conformal Einstein evolution. The conformal structure of space-time, lecture Notes in Phys., vol. 604, pp. 1–50. Springer, Berlin (2002)

  20. Graham, C.R.: Volume and area renormalizations for conformally compact Einstein metrics. Rend. Circ. Mat. Palermo Suppl. No. 63, 31–42 (2000)

  21. Graham, C.R., Lee, J.M.: Einstein metrics with prescribed conformal infinity on the ball. Adv. Math. 87, 186–225 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Graham, C.R., Zworski, M.: Scattering matrix in conformal geometry. Invent. Math. 152, 89–118 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hammerl, M., Somberg, P., Souček, V., Silhan, J.: On a new normalization for tractor covariant derivatives. J. Eur. Math. Soc. 14(6), 1859–1883 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Henningson, M., Skenderis, K.: The holographic Weyl anomaly. J. High Energy Phys. 7, Paper 23, 12 (1998)

  25. Mazzeo, R.: The Hodge cohomology of a conformally compact metric. J. Differ. Geom. 28, 309–339 (1988)

    MathSciNet  MATH  Google Scholar 

  26. Melrose, R.B.: Geometric scattering theory. Stanford Lectures. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  27. Penrose, R.: Asymptotic properties of fields and space-times. Phys. Rev. Lett. 10, 66–68 (1963)

    Article  MathSciNet  Google Scholar 

  28. Penrose, R.: Zero rest-mass fields including gravitation: asymptotic behaviour. R. Soc. Lond. Ser. A 284, 159–203 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schouten, J.A., Haantjes, J.: Beiträge zur allgemeinen (gekrümmten) konformen Differentialgeometrie. Math. Ann. 112, 594–629 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schouten, J.A., Haantjes, J.: Beiträge zur allgemeinen (gekrümmten) konformen Differentialgeometrie, II. Math. Ann. 113, 568–583 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  31. Vasy, A.: Analytic continuation and high energy estimates for the resolvent of the Laplacian on forms on asymptotically hyperbolic spaces. arXiv:1206.5454

  32. Vasy, A.: Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces (with an appendix by Semyon Dyatlov). Invent. Math. 194, 381–513 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rod Gover.

Additional information

Both authors gratefully acknowledge support from the Royal Society of New Zealand via Marsden Grant 13-UOA-018; AČ gratefully acknowledges support by projects P23244-N13 and P27072-N25 of the Austrian Science Fund (FWF) and also the hospitality of the University of Auckland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Čap, A., Gover, A.R. Projective compactness and conformal boundaries. Math. Ann. 366, 1587–1620 (2016). https://doi.org/10.1007/s00208-016-1370-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1370-9

Mathematics Subject Classification

Navigation