Skip to main content
Log in

Transmission eigenvalues for strictly concave domains

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We show that for strictly concave domains there are no interior transmission eigenvalues in a region of the form \(\left\{ \lambda \in \mathbf{C}:\mathrm{Re}\,\lambda \ge 0,\,\,|\mathrm{Im}\,\lambda |\ge C_\varepsilon \left( \mathrm{Re}\,\lambda +1\right) ^{\frac{1}{2}+\varepsilon }\right\} \), \(C_\varepsilon >0\), for every \(0<\varepsilon \ll 1\). As a consequence, we obtain Weyl asymptotics for the number of the transmission eigenvalues with an almost optimal remainder term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dimassi, M., Sjöstrand, J.: Spectral Asymptotics in Semi-classical Limit. London Mathematical Society, Lecture Notes Series, vol. 268, Cambridge University Press (1999)

  2. Dimassi, M., Petkov, V.: Upper bound for the counting function of interior transmission eigenvalues. (2013) (preprint)

  3. Hitrik, M., Krupchyk, K., Ola, P., Päivärinta, L.: The interior transmission problem and bounds of transmission eigenvalues. Math. Res. Lett. 18, 279–293 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Melrose, R., Taylor, M.: Boundary problems for wave equations with glancing and gliding rays (unpublished manuscript)

  5. Lakshtanov, E., Vainberg, B.: Application of elliptic theory to the isotropic interior transmission eigenvalue problem. Inverse Problems 29, 104003 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Olver, F.: Asymptotics and Special Functions. Academic Press, New York, London (1974)

    MATH  Google Scholar 

  7. Pham, H., Stefanov, P.: Weyl asymptotics of the transmission eigenvalues for a constant index of refraction. Inverse Problems Imagining 8(3), 795–810 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Robbiano, L.: Spectral analysis of interior transmission eigenvalues. Inverse Problems 29, 104001 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Robbiano, L.: Counting function for interior transmission eigenvalues. (preprint 2013)

  10. Sjöstrand, J.: Weyl law for semi-classical resonances with randomly perturbed potentials. Memoire de la Societe Mathematique De France, vol. 136. SMF (2014)

  11. Petkov, V., Vodev, G.: Asymptotics of the number of the interior transmission eigenvalues. J. Spectr. Theory (to appear)

  12. Popov, G., Vodev, G.: Resonances near the real axis for transparent obstacles. Commun. Math. Phys. 207, 411–438 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Vodev, G.: Transmission eigenvalue-free regions. Commun. Math. Phys. 336, 1141–1166 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I would like to thank Vesselin Petkov for some very usefull discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgi Vodev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vodev, G. Transmission eigenvalues for strictly concave domains. Math. Ann. 366, 301–336 (2016). https://doi.org/10.1007/s00208-015-1329-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1329-2

Navigation