Skip to main content
Log in

Evans–Krylov Estimates for a nonconvex Monge–Ampère equation

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We establish Evans–Krylov estimates for certain nonconvex fully nonlinear elliptic and parabolic equations by exploiting partial Legendre transformations. The equations under consideration arise in part from the study of the “pluriclosed flow” introduced by Streets and Tian (Int Math Res Not 16:3101–3133, 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Berndtsson, B.: Convexity on the space of Kähler metrics. Ann. Fac. Sc. Toulouse XXII(4), 717–750 (2013)

    MATH  Google Scholar 

  2. Cafarelli, L., Silvestre, L.: On the Evans-Krylov theorem. arXiv:0905.1336

  3. Cafarelli, L., Cabre, X.: Fully Nonlinear Elliptic Equations, vol. 43. AMS Colloquium Publications, Providence (1995)

    Google Scholar 

  4. Cafarelli, L., Cabre, X.: Interior \(C^{2,\alpha }\) regularity theory for a class of nonconvex fully nonlinear elliptic equations. J. Math. Pures Appl. 9(5), 573–612 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Cafarelli, L., Yuan, Y.: A priori estimates for solutions of fully nonlinear equations with convex level set. Ind. Univ. Math. J. 49(2), 681–695 (2000)

    Article  MathSciNet  Google Scholar 

  6. Calabi, E.: Improper affine hypersurfaces of convex type and a generalization of a theorem by K. Jörgens. Mich. Math. J. 5, 105–126 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  7. Darboux, G.: Lecons sur la Théorie Générale des Surfaces et les Applications Géométriques du Calcul Infinitésimal I. Gauthier-Villars, Paris (1887)

    MATH  Google Scholar 

  8. Demailly, J.P.: Regularization of closed positive currents and intersection theory. J. Algorithms Geom. 1(3), 361–409 (1992)

    MathSciNet  MATH  Google Scholar 

  9. Evans, L.C.: Classical solutions of fully nonlinear, convex, second-order elliptic equations. Commun. Pure Appl. Math. 35(3), 333–363 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  11. Guan, P., Phong, D.H.: Partial Legendre transforms of non-linear equations. Proc. Am. Math. Soc. 140, 3831–3842 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hartman, P., Wintner, A.: On elliptic Monge–Ampère equations. Am. J. Math. 75(3), 611–620 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  13. Heinz, E.: On elliptic Monge–Ampère equations and Weyl’s embedding problem. J. Anal. Math. 7, 1–52 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  14. Heinz, E.: Uber die differentialungleichung \(0 < \alpha \le rt - s^{2} \le \beta < {\infty }\). Math. Z. 72, 107–126 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  15. Heinz, E.: Interior estimates for solutions of elliptic Monge-Ampère equations. Proc. Symp. Pure Math. IV, 149–155 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hormander, L.: On the Legendre and Laplace transformations. Ann. Sc. Norm. Sup. Pida 25(3–4), 517–568 (1997)

    MathSciNet  MATH  Google Scholar 

  17. Jörgens, K.: Über die Lösungen der Differentialgleichung \(rt-s^2 = 1\). Math. Ann. 127, 130–134 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kiselman, C.: The partial Legendre transformation for plurisubharmonic functions. Invent. Math. 49, 137–148 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  19. Krylov, N.B.: Boundedly inhomogeneous elliptic and parabolic equations. Izv. Akad. Mauk SSR Ser. Math 46(3), 487–523 (1982)

    MathSciNet  MATH  Google Scholar 

  20. Lempert, L.: Symmetries and other transformations of the complex Monge–Ampère equation. Duke. Math. Jour. 52(4), 869–885 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lieberman, G.: Second Order Parabolic Differential Equations. World Scientific, Singapore (1996)

    Book  MATH  Google Scholar 

  22. Nadirashvili, N., Vladuts, S.: Nonclassical solutions of fully nonlinear elliptic equations. Geom. Funct. Anal. 17, 1283–1296 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pogorelov, A.V.: The Minkowski multidimensional problem. Wiley, Washington DC (1978)

    MATH  Google Scholar 

  24. Rios, C., Sawyer, E., Wheeden, R.: A higher-dimensional partial Legendre transform, and regularity of degenerate Monge–Ampère equations. Adv. Math. 193(2), 373–415 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schulz, F.: A priori estimates for solutions of Monge-Ampére equations. Arch. Rat. Mech. Anal. (2) VIII 89(2), 123-133 (1985)

  26. Schulz, F.: Regularity theory for quasilinear elliptic systems and Monge-Ampére equations in two dimensions. In: Lecture Notes in Mathematics, vol. 1445. Springer, Berlin (1990)

  27. Streets, J.: Pluriclosed flow on generalized Kähler manifolds with split tangent bundle. arXiv:1405.0727

  28. Streets, J., Tian, G.: A parabolic flow of pluriclosed metrics. Int. Math. Res. Not. 16, 3101–3133 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Streets, J., Tian, G.: Generalized Kähler geometry and the pluriclosed flow. Nuc. Phys. B 858(2), 366–376 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Streets, J., Tian, G.: Regularity results for the pluriclosed flow. Geom. Top. 17, 2389–2429 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yuan, Y.: A priori estimates for solutions of fully nonlinear special Lagrangian equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 18(2), 261–270 (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micah Warren.

Additional information

J. Streets and M. Warren gratefully acknowledge support from the NSF via DMS-1301864 and DMS-1161498, respectively.

Appendix: Evolution equations

Appendix: Evolution equations

In this section we prove the crucial subsolution properties for the matrix W along the real and complex twisted Monge–Ampère equations. The results are contained in Lemmas 6.3 and 6.1. We directly prove the case of complex variables first, which consists of lengthy calculations and applications of the Cauchy-Schwarz inequality. Again we note that these monotonicity properties are suggested by the discussion of Legendre transformations in Sect. 2. A similar direct calculation can yield the case of real variables, but we suppress this as it is lengthy and nearly identical to the complex case. Instead we show that the real case follows by formally extending variables and appealing to the complex setting.

Lemma 6.1

Let \(u_t\) be a solution to (1.4) such that \(u_t \in \mathcal E^{k,l}_U\) for all t. Then

$$\begin{aligned} \left( \frac{\partial }{\partial t}- \mathcal L\right) \frac{\partial u}{\partial t}&= 0. \end{aligned}$$
(6.1)

Also,

$$\begin{aligned} \left( \frac{\partial }{\partial t}- \mathcal L\right) W = Q, \end{aligned}$$

where

$$\begin{aligned} Q_{\alpha _z \bar{\alpha }_z}&= - u^{\bar{z}_q z_r} u^{\bar{z}_s z_p} u_{z_p \bar{z}_q \alpha _z} u_{z_r \bar{z}_s \bar{\alpha }_z} + u^{\bar{z}_q z_r} u^{\bar{z}_s z_p} u_{z_p \bar{z}_q \alpha _z} u_{z_r \bar{z}_s \bar{w}_k} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z}\nonumber \\&\quad - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u^{\bar{z}_q z_r} u^{\bar{z}_s z_p} u_{z_p \bar{z}_q w_p} u_{z_r \bar{z}_s \bar{w}_q} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z} \nonumber \\&\quad + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_l} u^{\bar{z}_q z_r} u^{\bar{z}_s z_p} u_{z_p \bar{z}_q w_l} u_{z_r \bar{z}_s \bar{\alpha }_z}\nonumber \\&\quad + u^{\bar{z}_b z_a} \left[ - u_{\alpha _z \bar{w}_k z_a} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q \bar{z}_b} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z} + u_{\alpha _z \bar{w}_k z_a} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z \bar{z}_b} \right. \nonumber \\&\quad - u_{\alpha _z \bar{w}_k \bar{z}_b} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z} \nonumber \\&\quad + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \bar{z}_b} u^{\bar{w}_s w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z}\nonumber \\&\quad + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q w_r} u_{w_r \bar{w}_s \bar{z}_b} u^{\bar{w}_s w_l} u_{w_l \bar{\alpha }_z}\nonumber \\&\quad - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z \bar{z}_b}\nonumber \\&\quad \left. + u_{\alpha _z \bar{w}_k \bar{z}_b} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z z_a} - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \bar{z}_b} u^{\bar{w}_s w_l} u_{w_l \bar{\alpha }_z z_a} \right] \nonumber \\&\quad - u^{\bar{w}_b w_a} \left[ - u_{\alpha _z \bar{w}_k \bar{w}_b} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q w_a} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z} \right. \nonumber \\&\quad \left. + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \bar{w}_b} u^{\bar{w}_s w_p} u_{w_p \bar{w}_q w_a} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z} \right. \nonumber \\&\quad \left. + u_{\alpha _z \bar{w}_k \bar{w}_b} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z w_a} - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \bar{w}_b} u^{\bar{w}_s w_l} u_{w_l \bar{\alpha }_z w_a} \right] \end{aligned}$$
(6.2)
$$\begin{aligned} Q_{\alpha _w \bar{\alpha }_w}&= - u^{\bar{\alpha }_w w_k} u^{\bar{w}_l \alpha _w} u^{\bar{z}_q z_r} u^{\bar{z}_s z_p} u_{z_p \bar{z}_q w_k} u_{z_r \bar{z}_s \bar{w}_l} \nonumber \\&\quad +\, u^{\bar{z}_l z_k} u^{\bar{\alpha }_w w_p} u_{w_p \bar{w}_q \bar{z}_l} u^{\bar{w}_q w_j} u_{w_j \bar{w}_k z_k} u^{\bar{w}_k \alpha _w}\nonumber \\&\quad +\, u^{\bar{z}_l z_k} u^{\bar{\alpha }_w w_j} u_{w_j \bar{w}_k z_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q \bar{z}_l} u^{\bar{w}_q \alpha _w}\nonumber \\&\quad -\, u^{\bar{w}_l w_k} u^{\bar{\alpha }_w w_p} u_{w_p \bar{w}_q \bar{w}_l} u^{\bar{w}_q w_j} u_{w_j \bar{w}_r w_k} u^{\bar{w}_r \alpha _w}, \end{aligned}$$
(6.3)
$$\begin{aligned} Q_{\alpha _z \alpha _w}&= - u^{\bar{z}_b z_a} u^{\bar{z}_d z_c} u_{z_a \bar{z}_d \alpha _z} u_{z_c \bar{z}_b \bar{w}_k} u^{\bar{w}_k \alpha _w} + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_l} u^{\bar{w}_p \alpha _w} u^{\bar{z}_b z_a} u^{\bar{z}_d z_c} u_{z_a \bar{z}_d w_l} u_{z_c \bar{z}_b \bar{w}_p}\nonumber \\&\quad - u^{\bar{z}_b z_a} \left[ - u_{\alpha _z \bar{w}_k z_a} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q \bar{z}_b} u^{\bar{w}_q \alpha _w} - u_{\alpha _z \bar{w}_k \bar{z}_b} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q \alpha _w} \right. \nonumber \\&\quad + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \bar{z}_b} u^{\bar{w}_s w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q \alpha _w}\nonumber \\&\quad \left. + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q w_r} u_{w_r \bar{w}_s \bar{z}_b} u^{\bar{w}_s \alpha _w} \right] \nonumber \\&\quad + u^{\bar{w}_b w_a} \left[ - u_{\alpha _z \bar{w}_k \bar{w}_b} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q w_a} u^{\bar{w}_q \alpha _w}\right. \nonumber \\&\quad \left. + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \bar{w}_b} u^{\bar{w}_s w_p} u_{w_p \bar{w}_q w_a} u^{\bar{w}_q \alpha _w}\right] , \end{aligned}$$
(6.4)
$$\begin{aligned} Q_{\bar{\alpha }_z \bar{\alpha }_w} =\bar{Q}_{\alpha _z \alpha _w} \end{aligned}$$
(6.5)

Proof

First we prove (6.1).

$$\begin{aligned} \frac{\partial }{\partial t}\left( \frac{\partial u}{\partial t} \right)&= \frac{\partial }{\partial t}\left( \log \det u_{\alpha _z \bar{\alpha }_z} - \log \det (-u_{\alpha _w \bar{\alpha }_w}) \right) \\&= u^{\bar{z}_b z_a} \left( \frac{\partial u}{\partial t} \right) _{z_a \bar{z}_b} - u^{\bar{w}_b w_a} \left( \frac{\partial u}{\partial t} \right) _{w_a \bar{w}_b}\\&= \mathcal L\frac{\partial u}{\partial t}. \end{aligned}$$

Next we establish (6.3). We start by computing partial derivatives

$$\begin{aligned} \left( \log \det u_{z \bar{z}} \right) _{,\alpha \beta }&= \left( u^{\bar{z}_q z_p} u_{z_p \bar{z}_q \alpha } \right) _{,\beta }= u^{\bar{z}_q z_p} u_{z_p \bar{z}_q \alpha \beta } - u^{\bar{z}_q z_r} u^{\bar{z}_s z_p} u_{z_p \bar{z}_q \alpha } u_{z_r \bar{z}_s \beta },\nonumber \\ \left( \log \det (- u_{yy}) \right) _{,\alpha \beta }&= \left( u^{\bar{w}_q w_p} u_{w_p \bar{w}_q \alpha } \right) _{,\beta }\nonumber \\&= u^{\bar{w}_q w_p} u_{w_p \bar{w}_q \alpha \beta } - u^{\bar{w}_q w_r} u^{\bar{w}_s w_p} u_{w_p \bar{w}_q \alpha } u_{w_r \bar{w}_s \beta }, \end{aligned}$$
(6.6)

Using this we compute

$$\begin{aligned} \frac{\partial }{\partial t}u^{\bar{\alpha }_w \alpha _w}&= - u^{\bar{\alpha }_w w_k} \left( \frac{\partial }{\partial t}u \right) _{w_k \bar{w}_l} u^{\bar{w}_l \alpha _w}\nonumber \\&= - u^{\bar{\alpha }_w w_k} \left( \log \det u_{z \bar{z}} - \log \det (- u_{w \bar{w}}) \right) _{w_k \bar{w}_l} u^{\bar{w}_l \alpha _w}\nonumber \\&= u^{\bar{\alpha }_w w_k} u^{\bar{w}_l \alpha _w} \left( u^{\bar{w}_q w_p} u_{w_p \bar{w}_q w_k \bar{w}_l} - u^{\bar{w}_q w_r} u^{\bar{w}_s w_p} u_{w_p \bar{w}_q w_k} u_{w_r \bar{w}_s \bar{w}_l}\right. \nonumber \\&\ \left. \quad - u^{\bar{z}_q z_p} u_{z_p \bar{z}_q w_k \bar{w}_l} + u^{\bar{z}_q z_r} u^{\bar{z}_s z_p} u_{z_p \bar{z}_q w_k} u_{z_r \bar{z}_s \bar{w}_l} \right) . \end{aligned}$$
(6.7)

Also we compute the partial derivatives

$$\begin{aligned} u^{\bar{\alpha }_w \alpha _w}_{\alpha \beta }&= - \left( u^{\bar{\alpha }_w w_j} u_{w_j \bar{w}_k \alpha } u^{\bar{w}_k \alpha _w} \right) _{,\beta }\nonumber \\&= u^{\bar{\alpha }_w w_p} u_{w_p \bar{w}_q \beta } u^{\bar{w}_q w_j} u_{w_j \bar{w}_k \alpha } u^{\bar{w}_k \alpha _w} - u^{\bar{\alpha }_w w_j} u_{w_j \bar{w}_k \alpha \beta } u^{\bar{w}_k \alpha _w}\nonumber \\&\quad + u^{\bar{\alpha }_w w_j} u_{w_j \bar{w}_k \alpha } u^{\bar{w}_k w_p} u_{w_p \bar{w}_q \beta } u^{\bar{w}_q \alpha _w}. \end{aligned}$$
(6.8)

Thus we have

$$\begin{aligned} \mathcal L(u^{\bar{\alpha }_w \alpha _w})&= u^{\bar{z}_l z_k} (u^{\bar{\alpha }_w \alpha _w})_{,z_k \bar{z}_l} - u^{\bar{w}_k w_l} (u^{\bar{\alpha }_w \alpha _w})_{,w_k \bar{w}_l}\nonumber \\&= u^{\bar{z}_l z_k} \left( u^{\bar{\alpha }_w w_p} u_{w_p \bar{w}_q \bar{z}_l} u^{\bar{w}_q w_j} u_{w_j \bar{w}_k z_k} u^{\bar{w}_k \alpha _w} \right. \nonumber \\&\left. \quad -u^{\bar{\alpha }_w w_j} u_{w_j \bar{w}_k z_k \bar{z}_l} u^{\bar{w}_k \alpha _w} + u^{\bar{\alpha }_w w_j} u_{w_j \bar{w}_k z_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q \bar{z}_l} u^{\bar{w}_q \alpha _w}\right) \nonumber \\&\quad - u^{\bar{w}_l w_k} \left( u^{\bar{\alpha }_w w_p} u_{w_p \bar{w}_q \bar{w}_l} u^{\bar{w}_q w_j} u_{w_j \bar{w}_r w_k} u^{\bar{w}_r \alpha _w} \right. \nonumber \\&\quad \left. -u^{\bar{\alpha }_w w_j} u_{w_j \bar{w}_r w_k \bar{w}_l} u^{\bar{w}_r \alpha _w} + u^{\bar{\alpha }_w w_j} u_{w_j \bar{w}_r w_k} u^{\bar{w}_r w_p} u_{w_p \bar{w}_q \bar{w}_l} u^{\bar{w}_q \alpha _w}\right) . \end{aligned}$$
(6.9)

Putting together (6.7) and (6.9) yields

$$\begin{aligned}&\left( \frac{\partial }{\partial t}- \mathcal L\right) W_{\alpha _w \bar{\alpha }_w}\\&\quad = - u^{\bar{\alpha }_w w_k} u^{\bar{w}_l \alpha _w} \left( - u^{\bar{w}_q w_r} u^{\bar{w}_s w_p} u_{w_p \bar{w}_q w_k} u_{w_r \bar{w}_s \bar{w}_l} + u^{\bar{z}_q z_r} u^{\bar{z}_s z_p} u_{z_p \bar{z}_q w_k} u_{z_r \bar{z}_s \bar{w}_l} \right) \\&\qquad + u^{\bar{z}_l z_k} \left( u^{\bar{\alpha }_w w_p} u_{w_p \bar{w}_q \bar{z}_l} u^{\bar{w}_q w_j} u_{w_j \bar{w}_k z_k} u^{\bar{w}_k \alpha _w} + u^{\bar{\alpha }_w w_j} u_{w_j \bar{w}_k z_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q \bar{z}_l} u^{\bar{w}_q \alpha _w} \right) \\&\qquad - u^{\bar{w}_l w_k} \left( u^{\bar{\alpha }_w w_p} u_{w_p \bar{w}_q \bar{w}_l} u^{\bar{w}_q w_j} u_{w_j \bar{w}_r w_k} u^{\bar{w}_r \alpha _w} + u^{\bar{\alpha }_w w_j} u_{w_j \bar{w}_r w_k} u^{\bar{w}_r w_p} u_{w_p \bar{w}_q \bar{w}_l} u^{\bar{w}_q \alpha _w} \right) \\&\quad = - u^{\bar{\alpha }_w w_k} u^{\bar{w}_l \alpha _w} u^{\bar{z}_q z_r} u^{\bar{z}_s z_p} u_{z_p \bar{z}_q w_k} u_{z_r \bar{z}_s \bar{w}_l} + u^{\bar{z}_l z_k} u^{\bar{\alpha }_w w_p} u_{w_p \bar{w}_q \bar{z}_l} u^{\bar{w}_q w_j} u_{w_j \bar{w}_k z_k} u^{\bar{w}_k \alpha _w}\\&\qquad + u^{\bar{z}_l z_k} u^{\bar{\alpha }_w w_j} u_{w_j \bar{w}_k z_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q \bar{z}_l} u^{\bar{w}_q \alpha _w} - u^{\bar{w}_l w_k} u^{\bar{\alpha }_w w_p} u_{w_p \bar{w}_q \bar{w}_l} u^{\bar{w}_q w_j} u_{w_j \bar{w}_r w_k} u^{\bar{w}_r \alpha _w}, \end{aligned}$$

finishing the proof of (6.3). Next we establish (6.2). First we compute using (6.6)

$$\begin{aligned} \frac{\partial }{\partial t}u_{\alpha _z \bar{\alpha }_z}&= \left( \log \det u_{\alpha _z \bar{\alpha }_z} - \log \det (- u_{\alpha _w \bar{\alpha }_w}) \right) _{\alpha _z \bar{\alpha }_z}\\&= u^{\bar{z}_q z_p} u_{z_p \bar{z}_q \alpha _z \bar{\alpha }_z} - u^{\bar{z}_q z_r} u^{\bar{z}_s z_p} u_{z_p \bar{z}_q \alpha _z} u_{z_r \bar{z}_s \bar{\alpha }_z}\\&\quad - u^{\bar{w}_q w_p} u_{w_p \bar{w}_q \alpha _z \bar{\alpha }_z} + u^{\bar{w}_q w_r} u^{\bar{w}_s w_p} u_{w_p \bar{w}_q \alpha _z} u_{w_r \bar{w}_s \bar{\alpha }_z}. \end{aligned}$$

Also

$$\begin{aligned} \mathcal Lu_{\alpha _z \bar{\alpha }_z} = u^{\bar{z}_q z_p} u_{\alpha _z \bar{\alpha }_z z_p \bar{z}_q} - u^{\bar{w}_q w_p} u_{\alpha _z \bar{\alpha }_z w_p \bar{w}_q}. \end{aligned}$$

Thus

$$\begin{aligned} \left( \frac{\partial }{\partial t}- \mathcal L\right) u_{\alpha _z \bar{\alpha }_z} = - u^{\bar{z}_q z_r} u^{\bar{z}_s z_p} u_{z_p \bar{z}_q \alpha _z} u_{z_r \bar{z}_s \bar{\alpha }_z} + u^{\bar{w}_q w_r} u^{\bar{w}_s w_p} u_{w_p \bar{w}_q \alpha _z} u_{w_r \bar{w}_s \bar{\alpha }_z}. \end{aligned}$$
(6.10)

To compute the next term we first differentiate using (6.6)

$$\begin{aligned}&\frac{\partial }{\partial t}\left( u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z} \right) \nonumber \\&\quad = \left( \frac{\partial }{\partial t}u \right) _{\alpha _z \bar{w}_k} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z} - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} \left( \frac{\partial }{\partial t}u \right) _{w_p \bar{w}_q} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z}\nonumber \\&\qquad + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_l} \left( \frac{\partial }{\partial t}u_{w_l \bar{\alpha }_z} \right) \nonumber \\&\quad = \left( u^{\bar{z}_q z_p} u_{z_p \bar{z}_q \alpha _z \bar{w}_k} - u^{\bar{z}_q z_r} u^{\bar{z}_s z_p} u_{z_p \bar{z}_q \alpha _z} u_{z_r \bar{z}_s \bar{w}_k} - u^{\bar{w}_b w_a} u_{w_a \bar{w}_b \alpha _z \bar{w}_k} \right. \nonumber \\&\qquad \left. + u^{\bar{w}_d w_c} u^{\bar{w}_b w_a} u_{w_a \bar{w}_d \alpha _z} u_{w_c \bar{w}_b \bar{w}_k} \right) u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z}\nonumber \\&\qquad - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} \left( u^{\bar{z}_q z_p} u_{z_p \bar{z}_q w_p \bar{w}_q} - u^{\bar{z}_q z_r} u^{\bar{z}_s z_p} u_{z_p \bar{z}_q w_p} u_{z_r \bar{z}_s \bar{w}_q} \right. \nonumber \\&\qquad \left. - u^{\bar{w}_b w_a} u_{w_a \bar{w}_b w_p \bar{w}_q} + u^{\bar{w}_d w_c} u^{\bar{w}_b w_a} u_{w_a \bar{w}_d w_p} u_{w_c \bar{w}_b \bar{w}_q} \right) u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z}\nonumber \\&\qquad + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_l} \left( u^{\bar{z}_q z_p} u_{z_p \bar{z}_q w_l \bar{\alpha }_z} - u^{\bar{z}_q z_r} u^{\bar{z}_s z_p} u_{z_p \bar{z}_q w_l} u_{z_r \bar{z}_s \bar{\alpha }_z} - u^{\bar{w}_b w_a} u_{w_a \bar{w}_b w_l \bar{\alpha }_z} \right. \nonumber \\&\qquad \left. + u^{\bar{w}_d w_c} u^{\bar{w}_b w_a} u_{w_a \bar{w}_d w_l} u_{w_c \bar{w}_b \bar{\alpha }_z} \right) . \end{aligned}$$
(6.11)

Next we compute the partial derivatives

$$\begin{aligned}&\left( u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z}\right) _{,\alpha \beta }\\&\quad = \left( u_{\alpha _z \bar{w}_k \alpha } u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z} - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q \alpha } u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z} + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z \alpha } \right) _{,\beta }\\&\quad = u_{\alpha _z \bar{w}_k \alpha \beta } u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z} - u_{\alpha _z \bar{w}_k \alpha } u^{\bar{w}_k w_p} u_{w_p \bar{w}_q \beta } u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z} + u_{\alpha _z \bar{w}_k \alpha } u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z \beta }\\&\qquad - u_{\alpha _z \bar{w}_k \beta } u^{\bar{w}_k w_p} u_{w_p \bar{w}_q \alpha } u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z} + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \beta } u^{\bar{w}_s w_p} u_{w_p \bar{w}_q \alpha } u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z}\\&\qquad - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q \alpha \beta } u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z} + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q \alpha } u^{\bar{w}_q w_r} u_{w_r \bar{w}_s \beta } u^{\bar{w}_s w_l} u_{w_l \bar{\alpha }_z}\\&\qquad - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q \alpha } u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z \beta }\\&\qquad + u_{\alpha _z \bar{w}_k \beta } u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z \alpha } - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \beta } u^{\bar{w}_s w_l} u_{w_l \bar{\alpha }_z \alpha } + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z \alpha \beta }. \end{aligned}$$

Thus we have

$$\begin{aligned}&\mathcal L( u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z})\nonumber \\&\quad = u^{\bar{z}_b z_a} \left( u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z}\right) _{,z_a \bar{z}_b} - u^{\bar{w}_b w_a} \left( u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z}\right) _{,w_a \bar{w}_b}\nonumber \\&\quad = u^{\bar{z}_b z_a} \left[ u_{\alpha _z \bar{w}_k z_a \bar{z}_b} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z} - u_{\alpha _z \bar{w}_k z_a} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q \bar{z}_b} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z}\right. \nonumber \\&\qquad + u_{\alpha _z \bar{w}_k z_a} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z \bar{z}_b} - u_{\alpha _z \bar{w}_k \bar{z}_b} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z}\nonumber \\&\qquad + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \bar{z}_b} u^{\bar{w}_s w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z}- u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q z_a \bar{z}_b} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z}\nonumber \\&\qquad + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q w_r} u_{w_r \bar{w}_s \bar{z}_b} u^{\bar{w}_s w_l} u_{w_l \bar{\alpha }_z}- u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z \bar{z}_b}\nonumber \\&\qquad \left. + u_{\alpha _z \bar{w}_k \bar{z}_b} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z z_a} - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \bar{z}_b} u^{\bar{w}_s w_l} u_{w_l \bar{\alpha }_z z_a} + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z z_a \bar{z}_b} \right] \nonumber \\&\qquad - u^{\bar{w}_b w_a} \left[ u_{\alpha _z \bar{w}_k w_a \bar{w}_b} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z} - u_{\alpha _z \bar{w}_k w_a} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q \bar{w}_b} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z}\right. \nonumber \\&\qquad + u_{\alpha _z \bar{w}_k w_a} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z \bar{w}_b}- u_{\alpha _z \bar{w}_k \bar{w}_b} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q w_a} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z}\nonumber \\&\qquad + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \bar{w}_b} u^{\bar{w}_s w_p} u_{w_p \bar{w}_q w_a} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z}- u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q w_a \bar{w}_b} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z} \nonumber \\&\qquad + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q w_a} u^{\bar{w}_q w_r} u_{w_r \bar{w}_s \bar{w}_b} u^{\bar{w}_s w_l} u_{w_l \bar{\alpha }_z}\nonumber \\&\qquad - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q w_a} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z \bar{w}_b}+ u_{\alpha _z \bar{w}_k \bar{w}_b} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z w_a}\nonumber \\&\qquad \left. - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \bar{w}_b} u^{\bar{w}_s w_l} u_{w_l \bar{\alpha }_z w_a} + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z w_a \bar{w}_b} \right] . \end{aligned}$$
(6.12)

Putting together (6.10), (6.11) and (6.12) yields

$$\begin{aligned}&\left( \frac{\partial }{\partial t}- \mathcal L\right) W_{\alpha _z \bar{\alpha }_z}\\&\quad = - u^{\bar{z}_q z_r} u^{\bar{z}_s z_p} u_{z_p \bar{z}_q \alpha _z} u_{z_r \bar{z}_s \bar{\alpha }_z} + u^{\bar{w}_q w_r} u^{\bar{w}_s w_p} u_{w_p \bar{w}_q \alpha _z} u_{w_r \bar{w}_s \bar{\alpha }_z}\\&\qquad - \left( - u^{\bar{z}_q z_r} u^{\bar{z}_s z_p} u_{z_p \bar{z}_q \alpha _z} u_{z_r \bar{z}_s \bar{w}_k} + u^{\bar{w}_d w_c} u^{\bar{w}_b w_a} u_{w_a \bar{w}_d \alpha _z} u_{w_c \bar{w}_b \bar{w}_k} \right) u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z}\\&\qquad + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} \left( - u^{\bar{z}_q z_r} u^{\bar{z}_s z_p} u_{z_p \bar{z}_q w_p} u_{z_r \bar{z}_s \bar{w}_q} + u^{\bar{w}_d w_c} u^{\bar{w}_b w_a} u_{w_a \bar{w}_d w_p} u_{w_c \bar{w}_b \bar{w}_q} \right) \\&\qquad \times u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z}- u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_l} \left( - u^{\bar{z}_q z_r} u^{\bar{z}_s z_p} u_{z_p \bar{z}_q w_l} u_{z_r \bar{z}_s \bar{\alpha }_z}\right. \\&\qquad \left. + u^{\bar{w}_d w_c} u^{\bar{w}_b w_a} u_{w_a \bar{w}_d w_l} u_{w_c \bar{w}_b \bar{\alpha }_z} \right) \\&\qquad + u^{\bar{z}_b z_a} \left[ - u_{\alpha _z \bar{w}_k z_a} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q \bar{z}_b} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z} + u_{\alpha _z \bar{w}_k z_a} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z \bar{z}_b} \right. \\&\qquad - u_{\alpha _z \bar{w}_k \bar{z}_b} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z} + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \bar{z}_b} u^{\bar{w}_s w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z}\\&\qquad + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q w_r} u_{w_r \bar{w}_s \bar{z}_b} u^{\bar{w}_s w_l} u_{w_l \bar{\alpha }_z} - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z \bar{z}_b}\\&\qquad \left. + u_{\alpha _z \bar{w}_k \bar{z}_b} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z z_a} - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \bar{z}_b} u^{\bar{w}_s w_l} u_{w_l \bar{\alpha }_z z_a} \right] \\&\qquad - u^{\bar{w}_b w_a} \left[ - u_{\alpha _z \bar{w}_k w_a} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q \bar{w}_b} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z} + u_{\alpha _z \bar{w}_k w_a} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z \bar{w}_b} \right. \\&\qquad - u_{\alpha _z \bar{w}_k \bar{w}_b} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q w_a} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z} \\&\qquad + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \bar{w}_b} u^{\bar{w}_s w_p} u_{w_p \bar{w}_q w_a} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z}\\&\qquad + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q w_a} u^{\bar{w}_q w_r} u_{w_r \bar{w}_s \bar{w}_b} u^{\bar{w}_s w_l} u_{w_l \bar{\alpha }_z}\\&\qquad - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q w_a} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z \bar{w}_b}\\&\qquad \left. + u_{\alpha _z \bar{w}_k \bar{w}_b} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z w_a} - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \bar{w}_b} u^{\bar{w}_s w_l} u_{w_l \bar{\alpha }_z w_a} \right] \\&\quad =: \sum _{i=1}^{24} A_i. \end{aligned}$$

We observe that \(A_2 + A_{18} = A_4 + A_{17} = A_6 + A_{21} = A_8 + A_{22} = 0\), and hence

$$\begin{aligned}&\left( \frac{\partial }{\partial t}- \mathcal L\right) W_{\alpha _z \bar{\alpha }_z}\\&\quad = - u^{\bar{z}_q z_r} u^{\bar{z}_s z_p} u_{z_p \bar{z}_q \alpha _z} u_{z_r \bar{z}_s \bar{\alpha }_z} + u^{\bar{z}_q z_r} u^{\bar{z}_s z_p} u_{z_p \bar{z}_q \alpha _z} u_{z_r \bar{z}_s \bar{w}_k} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z}\\&\qquad - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u^{\bar{z}_q z_r} u^{\bar{z}_s z_p} u_{z_p \bar{z}_q w_p} u_{z_r \bar{z}_s \bar{w}_q} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z}\\&\qquad + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_l} u^{\bar{z}_q z_r} u^{\bar{z}_s z_p} u_{z_p \bar{z}_q w_l} u_{z_r \bar{z}_s \bar{\alpha }_z}\\&\qquad + u^{\bar{z}_b z_a} \left[ - u_{\alpha _z \bar{w}_k z_a} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q \bar{z}_b} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z} + u_{\alpha _z \bar{w}_k z_a} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z \bar{z}_b} \right. \\&\qquad - u_{\alpha _z \bar{w}_k \bar{z}_b} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z} + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \bar{z}_b} u^{\bar{w}_s w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z}\\&\qquad + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q w_r} u_{w_r \bar{w}_s \bar{z}_b} u^{\bar{w}_s w_l} u_{w_l \bar{\alpha }_z} - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z \bar{z}_b}\\&\qquad \left. + u_{\alpha _z \bar{w}_k \bar{z}_b} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z z_a} - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \bar{z}_b} u^{\bar{w}_s w_l} u_{w_l \bar{\alpha }_z z_a} \right] \\&\qquad - u^{\bar{w}_b w_a} \left[ - u_{\alpha _z \bar{w}_k \bar{w}_b} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q w_a} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z}\right. \\&\qquad + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \bar{w}_b} u^{\bar{w}_s w_p} u_{w_p \bar{w}_q w_a} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z} \\&\qquad \left. + u_{\alpha _z \bar{w}_k \bar{w}_b} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z w_a} - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \bar{w}_b} u^{\bar{w}_s w_l} u_{w_l \bar{\alpha }_z w_a} \right] , \end{aligned}$$

completing the proof of (6.2). Next we establish (6.4). Using (6.6) we compute

$$\begin{aligned}&\frac{\partial }{\partial t}u_{\alpha _z \bar{w}_k} u^{\bar{w}_k \alpha _w}\nonumber \\&\quad = \left( \frac{\partial }{\partial t}u \right) _{\alpha _z \bar{w}_k} u^{\bar{w}_k \alpha _w} - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_l} \left( \frac{\partial }{\partial t}u \right) _{w_l \bar{w}_p} u^{\bar{w}_p \alpha _w}\nonumber \\&\quad = \left( u^{\bar{z}_b z_a} u_{z_a \bar{z}_b \alpha _z \bar{w}_k} - u^{\bar{w}_b w_a} u_{w_a \bar{w}_b \alpha _z \bar{w}_k} \right. \nonumber \\&\qquad \left. - u^{\bar{z}_b z_a} u^{\bar{z}_d z_c} u_{z_a \bar{z}_d \alpha _z} u_{z_c \bar{z}_b \bar{w}_k} + u^{\bar{w}_b w_a} u^{\bar{w}_d w_c} u_{w_a \bar{w}_d \alpha _z} u_{w_c \bar{w}_b \bar{w}_k} \right) u^{\bar{w}_k \alpha _w}\nonumber \\&\qquad - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_l} u^{\bar{w}_p \alpha _w} \left( u^{\bar{z}_b z_a} u_{z_a \bar{z}_b w_l \bar{w}_p} - u^{\bar{w}_b w_a} u_{w_a \bar{w}_b w_l \bar{w}_p} \right. \nonumber \\&\qquad \left. - u^{\bar{z}_b z_a} u^{\bar{z}_d z_c} u_{z_a \bar{z}_d w_l} u_{z_c \bar{z}_b \bar{w}_p} + u^{\bar{w}_b w_a} u^{\bar{w}_d w_c} u_{w_a \bar{w}_d w_l} u_{w_c \bar{w}_b \bar{w}_p} \right) . \end{aligned}$$
(6.13)

Next we compute partial derivatives

$$\begin{aligned}&\left( u_{\alpha _z \bar{w}_k} u^{\bar{w}_k \alpha _w} \right) _{,\mu \rho } =\ \left( u_{\alpha _z \bar{w}_k \mu } u^{\bar{w}_k \alpha _w} - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q \mu } u^{\bar{w}_q \alpha _w} \right) _{,\rho }\nonumber \\&\quad = u_{\alpha _z \bar{w}_k \mu \rho } u^{\bar{w}_k \alpha _w} - u_{\alpha _z \bar{w}_k \mu } u^{\bar{w}_k w_p} u_{w_p \bar{w}_q \rho } u^{\bar{w}_q \alpha _w}\nonumber \\&\qquad - u_{\alpha _z \bar{w}_k \rho } u^{\bar{w}_k w_p} u_{w_p \bar{w}_q \mu } u^{\bar{w}_q \alpha _w} + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \rho } u^{\bar{w}_s w_p} u_{w_p \bar{w}_q \mu } u^{\bar{w}_q \alpha _w}\nonumber \\&\qquad - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q \mu \rho } u^{\bar{w}_q \alpha _w} + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q \mu } u^{\bar{w}_q w_r} u_{w_r \bar{w}_s \rho } u^{\bar{w}_s \alpha _w}. \end{aligned}$$
(6.14)

Using this we compute

$$\begin{aligned}&\mathcal L\left( u_{\alpha _z \bar{w}_k} u^{\bar{w}_k \alpha _w} \right) \nonumber \\&\quad = u^{\bar{z}_b z_a} \left( u_{\alpha _z \bar{w}_k} u^{\bar{w}_k \alpha _w} \right) _{z_a \bar{z}_b} - u^{\bar{w}_b w_a} \left( u_{\alpha _z \bar{w}_k} u^{\bar{w}_k \alpha _w} \right) _{w_a \bar{w}_b}\nonumber \\&\quad = u^{\bar{z}_b z_a} \left[ u_{\alpha _z \bar{w}_k z_a \bar{z}_b} u^{\bar{w}_k \alpha _w} - u_{\alpha _z \bar{w}_k z_a} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q \bar{z}_b} u^{\bar{w}_q \alpha _w} \right. \nonumber \\&\qquad - u_{\alpha _z \bar{w}_k \bar{z}_b} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q \alpha _w} + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \bar{z}_b} u^{\bar{w}_s w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q \alpha _w}\nonumber \\&\qquad \left. - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q z_a \bar{z}_b} u^{\bar{w}_q \alpha _w} + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q w_r} u_{w_r \bar{w}_s \bar{z}_b} u^{\bar{w}_s \alpha _w} \right] \nonumber \\&\qquad - u^{\bar{w}_b w_a} \left[ u_{\alpha _z \bar{w}_k w_a \bar{w}_b} u^{\bar{w}_k \alpha _w} - u_{\alpha _z \bar{w}_k w_a} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q \bar{w}_b} u^{\bar{w}_q \alpha _w} \right. \nonumber \\&\qquad - u_{\alpha _z \bar{w}_k \bar{w}_b} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q w_a} u^{\bar{w}_q \alpha _w} + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \bar{w}_b} u^{\bar{w}_s w_p} u_{w_p \bar{w}_q w_a} u^{\bar{w}_q \alpha _w}\nonumber \\&\qquad \left. - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q w_a \bar{w}_b} u^{\bar{w}_q \alpha _w} + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q w_a} u^{\bar{w}_q w_r} u_{w_r \bar{w}_s \bar{w}_b} u^{\bar{w}_s \alpha _w} \right] . \end{aligned}$$
(6.15)

Combining (6.13) and (6.15) yields

$$\begin{aligned}&\left( \frac{\partial }{\partial t}- \mathcal L\right) W_{\alpha _z \alpha _w}\\&\quad = \left( - u^{\bar{z}_b z_a} u^{\bar{z}_d z_c} u_{z_a \bar{z}_d \alpha _z} u_{z_c \bar{z}_b \bar{w}_k} + u^{\bar{w}_b w_a} u^{\bar{w}_d w_c} u_{w_a \bar{w}_d \alpha _z} u_{w_c \bar{w}_b \bar{w}_k} \right) u^{\bar{w}_k \alpha _w}\\&\qquad - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_l} u^{\bar{w}_p \alpha _w} \left( - u^{\bar{z}_b z_a} u^{\bar{z}_d z_c} u_{z_a \bar{z}_d w_l} u_{z_c \bar{z}_b \bar{w}_p} + u^{\bar{w}_b w_a} u^{\bar{w}_d w_c} u_{w_a \bar{w}_d w_l} u_{w_c \bar{w}_b \bar{w}_p} \right) \\&\qquad - u^{\bar{z}_b z_a} \left[ - u_{\alpha _z \bar{w}_k z_a} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q \bar{z}_b} u^{\bar{w}_q \alpha _w} - u_{\alpha _z \bar{w}_k \bar{z}_b} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q \alpha _w} \right. \\&\qquad + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \bar{z}_b} u^{\bar{w}_s w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q \alpha _w} \\&\qquad \left. + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q w_r} u_{w_r \bar{w}_s \bar{z}_b} u^{\bar{w}_s \alpha _w} \right] \\&\qquad + u^{\bar{w}_b w_a} \left[ - u_{\alpha _z \bar{w}_k w_a} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q \bar{w}_b} u^{\bar{w}_q \alpha _w} - u_{\alpha _z \bar{w}_k \bar{w}_b} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q w_a} u^{\bar{w}_q \alpha _w} \right. \\&\qquad \left. + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \bar{w}_b} u^{\bar{w}_s w_p} u_{w_p \bar{w}_q w_a} u^{\bar{w}_q \alpha _w} \right. \\&\qquad \left. + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q w_a} u^{\bar{w}_q w_r} u_{w_r \bar{w}_s \bar{w}_b} u^{\bar{w}_s \alpha _w} \right] \\&\quad =: \sum _{i=1}^{12} A_i. \end{aligned}$$

Observing that W is Hermitian, and that the operator \(\frac{\partial }{\partial t}- \mathcal L\) is Hermitian we obtain (6.5). \(\square \)

Lemma 6.2

With the setup above,

$$\begin{aligned} Q \le 0. \end{aligned}$$

Proof

Using Lemma 6.1 we compute

$$\begin{aligned}&Q(\alpha ,\bar{\alpha }) = Q_{\alpha _z \bar{\alpha }_z} + Q_{\alpha _z \bar{\alpha }_w} + Q_{\alpha _w \bar{\alpha }_z} + Q_{\alpha _w \bar{\alpha }_w}\\&\quad = - u^{\bar{z}_q z_r} u^{\bar{z}_s z_p} u_{z_p \bar{z}_q \alpha _z} u_{z_r \bar{z}_s \bar{\alpha }_z} + u^{\bar{z}_q z_r} u^{\bar{z}_s z_p} u_{z_p \bar{z}_q \alpha _z} u_{z_r \bar{z}_s \bar{w}_k} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z}\\&\qquad - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u^{\bar{z}_q z_r} u^{\bar{z}_s z_p} u_{z_p \bar{z}_q w_p} u_{z_r \bar{z}_s \bar{w}_q} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z}\\ \end{aligned}$$
$$\begin{aligned}&\qquad + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_l} u^{\bar{z}_q z_r} u^{\bar{z}_s z_p} u_{z_p \bar{z}_q w_l} u_{z_r \bar{z}_s \bar{\alpha }_z}\\&\qquad + u^{\bar{z}_b z_a} \left[ - u_{\alpha _z \bar{w}_k z_a} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q \bar{z}_b} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z} + u_{\alpha _z \bar{w}_k z_a} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z \bar{z}_b} \right. \\&\qquad - u_{\alpha _z \bar{w}_k \bar{z}_b} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z} \\&\qquad + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \bar{z}_b} u^{\bar{w}_s w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z}\\&\qquad + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q w_r} u_{w_r \bar{w}_s \bar{z}_b} u^{\bar{w}_s w_l} u_{w_l \bar{\alpha }_z} \\&\qquad - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z \bar{z}_b}\\ \end{aligned}$$
$$\begin{aligned}&\qquad \left. + u_{\alpha _z \bar{w}_k \bar{z}_b} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z z_a} - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \bar{z}_b} u^{\bar{w}_s w_l} u_{w_l \bar{\alpha }_z z_a} \right] \\&\qquad - u^{\bar{w}_b w_a} \left[ - u_{\alpha _z \bar{w}_k \bar{w}_b} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q w_a} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z}\right. \\&\qquad + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \bar{w}_b} u^{\bar{w}_s w_p} u_{w_p \bar{w}_q w_a} u^{\bar{w}_q w_l} u_{w_l \bar{\alpha }_z} \\&\qquad \left. + u_{\alpha _z \bar{w}_k \bar{w}_b} u^{\bar{w}_k w_l} u_{w_l \bar{\alpha }_z w_a} - u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \bar{w}_b} u^{\bar{w}_s w_l} u_{w_l \bar{\alpha }_z w_a} \right] \\&\qquad - u^{\bar{\alpha }_w w_k} u^{\bar{w}_l \alpha _w} u^{\bar{z}_q z_r} u^{\bar{z}_s z_p} u_{z_p \bar{z}_q w_k} u_{z_r \bar{z}_s \bar{w}_l} \\ \end{aligned}$$
$$\begin{aligned}&\qquad + u^{\bar{z}_l z_k} u^{\bar{\alpha }_w w_p} u_{w_p \bar{w}_q \bar{z}_l} u^{\bar{w}_q w_j} u_{w_j \bar{w}_k z_k} u^{\bar{w}_k \alpha _w}\\&\qquad + u^{\bar{z}_l z_k} u^{\bar{\alpha }_w w_j} u_{w_j \bar{w}_k z_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q \bar{z}_l} u^{\bar{w}_q \alpha _w}\\&\qquad - u^{\bar{w}_l w_k} u^{\bar{\alpha }_w w_p} u_{w_p \bar{w}_q \bar{w}_l} u^{\bar{w}_q w_j} u_{w_j \bar{w}_r w_k} u^{\bar{w}_r \alpha _w}\\&\qquad - u^{\bar{z}_b z_a} u^{\bar{z}_d z_c} u_{z_a \bar{z}_d \alpha _z} u_{z_c \bar{z}_b \bar{w}_k} u^{\bar{w}_k \alpha _w} + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_l} u^{\bar{w}_p \alpha _w} u^{\bar{z}_b z_a} u^{\bar{z}_d z_c} u_{z_a \bar{z}_d w_l} u_{z_c \bar{z}_b \bar{w}_p}\\&\qquad - u^{\bar{z}_b z_a} \left[ - u_{\alpha _z \bar{w}_k z_a} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q \bar{z}_b} u^{\bar{w}_q \alpha _w} - u_{\alpha _z \bar{w}_k \bar{z}_b} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q \alpha _w} \right. \\&\qquad \left. + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \bar{z}_b} u^{\bar{w}_s w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q \alpha _w} \right. \\&\qquad \left. + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q w_r} u_{w_r \bar{w}_s \bar{z}_b} u^{\bar{w}_s \alpha _w} \right] \\&\qquad + u^{\bar{w}_b w_a} \left[ - u_{\alpha _z \bar{w}_k \bar{w}_b} u^{\bar{w}_k w_p} u_{w_p \bar{w}_q w_a} u^{\bar{w}_q \alpha _w}\right. \\ \end{aligned}$$
$$\begin{aligned}&\qquad \left. + u_{\alpha _z \bar{w}_k} u^{\bar{w}_k w_r} u_{w_r \bar{w}_s \bar{w}_b} u^{\bar{w}_s w_p} u_{w_p \bar{w}_q w_a} u^{\bar{w}_q \alpha _w}\right] \\&\qquad + u^{\bar{\alpha }_w w_p} u^{\bar{w}_q w_k} u_{w_k \bar{\alpha }_z} u^{\bar{z}_b z_a} u^{\bar{z}_d z_c} u_{z_a \bar{z}_d w_p} u_{z_c \bar{z}_b \bar{w}_q} - u^{\bar{\alpha }_w w_k} u^{\bar{z}_b z_a} u^{\bar{z}_d z_c} u_{z_a \bar{z}_d w_k} u_{z_c \bar{z}_b \bar{\alpha }_z}\\&\qquad - u^{\bar{z}_b z_a} \left[ u^{\bar{\alpha }_w w_r} u_{w_r \bar{w}_s \bar{z}_b} u^{\bar{w}_s w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q w_k} u_{w_k \bar{\alpha }_z} \right. \\&\qquad + u^{\bar{\alpha }_w w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q w_r} u_{w_r \bar{w}_s \bar{z}_b} u^{\bar{w}_s w_k} u_{w_k \bar{\alpha }_z}\\&\qquad \left. - u^{\bar{\alpha }_w w_p} u_{w_p \bar{w}_q z_a} u^{\bar{w}_q w_k} u_{w_k \bar{\alpha }_z \bar{z}_b} - u^{\bar{\alpha }_w w_p} u_{w_p \bar{w}_q \bar{z}_b} u^{\bar{w}_q w_k} u_{w_k \bar{\alpha }_z z_a}\right] \\&\qquad + u^{\bar{w}_b w_a} \left[ u^{\bar{\alpha }_w w_r} u_{w_r \bar{w}_s \bar{w}_b} u^{\bar{w}_s w_p} u_{w_p \bar{w}_q w_a} u^{\bar{w}_q w_k} u_{w_k \bar{\alpha }_z} \right. \\&\qquad \left. - u^{\bar{\alpha }_w w_p} u_{w_p \bar{w}_q \bar{w}_b} u^{\bar{w}_q w_k} u_{w_k \bar{\alpha }_z w_a} \right] \\&\quad =: \sum _{i=1}^{36} A_i. \end{aligned}$$

We observe:

$$\begin{aligned} A_{21} + A_{22}+A_{29} + A_{30}&= \mathfrak {R}\left[ \ u^{\bar{z}_b z_a} u^{\bar{z}_d z_c} \left( u_{z_c \bar{z}_b \bar{w}_p} u^{\bar{w}_p \alpha _w} \right) \right. \\&\quad \times \left. \left( u_{z_a \bar{z}_d w_l} u^{\bar{w}_k w_l} u_{\alpha _z \bar{w}_k} - u_{\alpha _z z_a \bar{z}_d} \right) \right] \\&\le - \left( A_1 + A_2 + A_3 + A_{4} + A_{17} \right) . \end{aligned}$$

using Cauchy–Schwarz.

Next

$$\begin{aligned} A_{23} + A_{26} + A_{32}+ A_{33}&=Re \left[ \ u^{\bar{z}_b z_a} u^{\bar{w}_k w_p} \left( u_{w_p \bar{w}_q \bar{z}_b} u^{\bar{w}_q \alpha _w} \right) \right. \nonumber \\&\quad \times \left. \left( u_{\alpha _z z_a \bar{w}_k} - u_{z_a w_p \bar{w}_k} u^{\bar{w}_q w_p} u_{\alpha _z \bar{w}_q} \right) \right] \\&\le - \left( A_5 + A_6 + A_9 + A_{10} + A_{18} \right) . \end{aligned}$$

Next

$$\begin{aligned} A_{24} + A_{25} + A_{31}+ A_{34}&= \mathfrak {R}\left[ \ u^{\bar{z}_b z_a} u^{\bar{w}_k w_p} \left( u_{w_p \bar{w}_q z_a} u^{\bar{w}_q \alpha _w} \right) \right. \nonumber \\&\quad \times \left. \left( u_{\alpha _z \bar{w}_k \bar{z}_b} - u_{\alpha _z \bar{w}_s} u^{\bar{w}_s w_r} u_{\bar{z}_b w_r \bar{w}_k} \right) \right] \\&\le \ - \left( A_7 + A_8 + A_{11} + A_{12} + A_{19} \right) . \end{aligned}$$

Next

$$\begin{aligned} A_{27} + A_{28} + A_{35}+ A_{36}&= \mathfrak {R}\left[ \ u^{\bar{w}_b w_a} u^{\bar{w}_k w_p} \left( u_{w_p \bar{w}_q w_a} u^{\bar{w}_q \alpha _w} \right) \right. \nonumber \\&\quad \times \left. \left( u_{\alpha _z \bar{w}_s} u^{\bar{w}_s w_r} u_{w_r \bar{w}_k \bar{w}_b} - u_{\alpha _z \bar{w}_k\bar{w}_b} \right) \right] \\&\le - \left( A_{13}+A_{14}+A_{15}+A_{16} + A_{20} \right) . \end{aligned}$$

\(\square \)

Lemma 6.3

Let \(u_t\) be a solution to (1.2) such that \(u_t \in \mathcal E\) for all t. Then

$$\begin{aligned} \left( \frac{\partial }{\partial t}- \mathcal L\right) \frac{\partial u}{\partial t}= 0. \end{aligned}$$

Also,

$$\begin{aligned} \left( \frac{\partial }{\partial t}- \mathcal L\right) W \le 0. \end{aligned}$$

Proof

Let \(u_t\) be as in the statement. Define \(v_t : \mathbb C^n \rightarrow \mathbb R\), by

$$\begin{aligned} v_t(z_1,\dots ,z_n) = u_t({{\mathrm{Re}}}z_1,\dots , {{\mathrm{Re}}}z_n). \end{aligned}$$

Elementary calculations show that \(v_t \in \mathcal E\) and that \(v_t\) is a solution to (1.4). Moreover the matrix W associated to \(v_t\) via (3.2) agrees with the matrix \(\nabla ^2 w\) as in (2.6). The result follows from Lemmas 6.1 and 6.2. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Streets, J., Warren, M. Evans–Krylov Estimates for a nonconvex Monge–Ampère equation. Math. Ann. 365, 805–834 (2016). https://doi.org/10.1007/s00208-015-1293-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1293-x

Navigation