Skip to main content
Log in

Automorphy of some residually dihedral Galois representations

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We establish the automorphy of some families of 2-dimensional representations of the absolute Galois group of a totally real field, which do not satisfy the so-called ‘Taylor–Wiles hypothesis’. We apply this to the problem of the modularity of elliptic curves over totally real fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Allen, Patrick B.: Modularity of nearly ordinary 2-adic residually dihedral Galois representations. Compos. Math. 150(8), 1235–1346 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boutot, J.F., Carayol, H.: Uniformisation \(p\)-adique des courbes de Shimura: les théorèmes de Čerednik et de Drinfel\(^{\prime }\) d. Astérisque 7(196–197), 45–158 (1992). (1991 Courbes modulaires et courbes de Shimura (Orsay, 1987/1988))

  3. Barnet-Lamb, T., Gee, T., Geraghty, D., Taylor, R.: Potential automorphy and change of weight. Ann. Math. 179(2), 501–609 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barnet-Lamb, T., Geraghty, D., Harris, M., Taylor, R.: A family of Calabi-Yau varieties and potential automorphy II. Publ. Res. Inst. Math. Sci. 47(1), 29–98 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boston, N., Lenstra Jr, H.W., Ribet, C.A.: Quotients of group rings arising from two-dimensional representations. C. R. Acad. Sci. Paris Sér. I Math. 312(4), 323–328 (1991)

    MathSciNet  MATH  Google Scholar 

  6. Breuil, C., Mézard, A.: Multiplicités modulaires et représentations de \({\rm GL}_2({ Z}_p)\) et de \({\rm Gal}(\overline{ Q}_p/{ Q}_p)\) en \(l=p\). Duke Math. J. 115(2), 205–310 (2002). (With an appendix by Guy Henniart)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boutot, J.-F., Zink, T.: The \(p\)-adic uniformization of Shimura curves. Preprint 95–107, Sonderforschungbereich 343, Universität Bielefeld (1995)

  8. Carayol, Henri: Sur la mauvaise réduction des courbes de Shimura. Compos. Math. 59(2), 151–230 (1986)

    MathSciNet  MATH  Google Scholar 

  9. Carayol, H.: Sur les représentations \(l\)-adiques associées aux formes modulaires de Hilbert. Ann. Sci. École Norm. Sup. 19(3), 409–468 (1986)

    MathSciNet  MATH  Google Scholar 

  10. Carayol, H.: Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet. In: \(p\)-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), vol. 165 of Contemp. Math., pp. 213–237. Amer. Math. Soc., Providence, RI (1994)

  11. Clozel, L., Harris, M., Taylor, R.: Automorphy for some \(l\)-adic lifts of automorphic mod \(l\) Galois representations. Publ. Math. Inst. Hautes Études Sci. 108, 1–181 (2008). (With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vignéras)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cornut, C., Vatsal, V.: CM points and quaternion algebras. Doc. Math. 10, 263–309 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Darmon, H., Diamond, F., Taylor, R.: Fermat’s Last Theorem. Elliptic Curves, Modular Forms and Fermat’s Last Theorem (Hong Kong, 1993), pp. 2–140. Int. Press, Cambridge (1997)

    Google Scholar 

  14. de Jong, A.J.: Smoothness, semi-stability and alterations. Inst. Hautes Études Sci. Publ. Math. 83, 51–93 (1996)

    Article  MATH  Google Scholar 

  15. Deligne, P., Serre, J.P.: Formes modulaires de poids \(1\). Ann. Sci. École Norm. Sup. 7(4), 507–530 (1975)

    MathSciNet  Google Scholar 

  16. Freitas, N., Le Hung, B.V., Siksek, S.: Elliptic curves over real quadratic fields are modular. Available at http://arxiv.org/abs/1310.7088

  17. Fontaine, J.M., Mazur, B.: Geometric Galois Representations. Elliptic Curves, Modular Forms, and Fermat’s Last Theorem (Hong Kong, 1993), Ser. Number Theory, I, pp. 41–78. Int. Press, Cambridge (1995)

    Google Scholar 

  18. Fujiwara, K.: Level Optimization in the Totally Real Case. Available online at http://arxiv.org/abs/math/0602586v1

  19. Gee, T.: A modularity lifting theorem for weight two Hilbert modular forms. Math. Res. Lett. 13(5–6), 805–811 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gee, T.: Erratum: a modularity lifting theorem for weight two Hilbert modular forms [mr2280776]. Math. Res. Lett. 16(1), 57–58 (2009)

    Article  MathSciNet  Google Scholar 

  21. Geraghty, D.: Modularity lifting theorems of ordinary Galois representations. Preprint

  22. Gouvêa, F.Q.:. Deformations of Galois representations. In: Arithmetic algebraic geometry (Park City, UT, 1999), vol. 9 of IAS/Park City Math. Ser., pp. 233–406. Am. Math. Soc., Providence, RI (2001, Appendix 1 by Mark Dickinson, Appendix 2 by Tom Weston and Appendix 3 by Matthew Emerton)

  23. Henniart, G.: Caractérisation de la correspondance de Langlands locale par les facteurs \(\epsilon \) de paires. Invent. Math. 113(2), 339–350 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Harris, M., Taylor, R.: The Geometry and Cohomology of Some Simple Shimura Varieties, vol. 151 of Annals of Mathematics Studies. Princeton University Press, Princeton (2001). (With an appendix by Vladimir G. Berkovich)

    Google Scholar 

  25. Jarvis, F.: Mazur’s principle for totally real fields of odd degree. Compos. Math. 116(1), 39–79 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Khare, C.: On isomorphisms between deformation rings and Hecke rings. Invent. Math. 154(1), 199–222 (2003). (With an appendix by Gebhard Böckle)

    Article  MathSciNet  MATH  Google Scholar 

  27. Khare, C.: Modularity of \(p\)-adic Galois representations via \(p\)-adic approximations. J. Théor. Nombres Bordeaux 16(1), 179–185 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kisin, M.: The Fontaine-Mazur conjecture for \({\rm GL}_2\). J. Am. Math. Soc. 22(3), 641–690 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kisin, M.: Moduli of finite flat group schemes, and modularity. Ann. Math. 170(3), 1085–1180 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Langlands, R.P.: Base Change for \({\rm GL}(2)\). Annals of Mathematics Studies, vol. 96. Princeton University Press, Princeton (1980)

  31. Milne, J.S.: Arithmetic Duality Theorems, 2nd edn. BookSurge, LLC, Charleston (2006)

    MATH  Google Scholar 

  32. Masayoshi, N.: Local Rings. Interscience Tracts in Pure and Applied Mathematics, No. 13. Interscience Publishers a division of John Wiley & Sons, New York-London (1962)

  33. Rajaei, A.: On the levels of mod \(l\) Hilbert modular forms. J. Reine Angew. Math. 537, 33–65 (2001)

    MathSciNet  MATH  Google Scholar 

  34. Ribet, K.A.: Multiplicities of Galois representations in Jacobians of Shimura curves. In: Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part II (Ramat Aviv, 1989), vol. 3 of Israel Math. Conf. Proc., pp. 221–236. Weizmann, Jerusalem (1990)

  35. Stein, W.A., et al.: Sage Mathematics Software (Version 5.9). The Sage Development Team. http://www.sagemath.org (2013)

  36. Serre, J.P.: Cohomologie Galoisienne. Lecture Notes in Mathematics, vol. 5, 5th edn. Springer-Verlag, Berlin (1994)

    Google Scholar 

  37. Skinner, C.M., Wiles, A.J.: Residually reducible representations and modular forms. Inst. Hautes Études Sci. Publ. Math. 89, 5–126 (2000)

    Google Scholar 

  38. Skinner, C.M., Wiles, A.J.: Nearly ordinary deformations of irreducible residual representations. Ann. Fac. Sci. Toulouse Math. 10(1), 185–215 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tate, J.: Number theoretic background. In: Automorphic Forms, Representations and \(L\)-Functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, pp. 3–26. Amer. Math. Soc., Providence, R.I. (1979)

  40. Taylor, R.: On Galois representations associated to Hilbert modular forms. Invent. Math. 98(2), 265–280 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  41. Taylor, R.: On the meromorphic continuation of degree two \(L\)-functions. Doc. Math., Extra Volume: John H. Coates’ Sixtieth Birthday, 729–779 (2006)

  42. Taylor, R.: Automorphy for some \(l\)-adic lifts of automorphic mod \(l\) Galois representations. II. Publ. Math. Inst. Hautes Études Sci. 108, 183–239 (2008)

    Article  MATH  Google Scholar 

  43. Thorne, J.: On the automorphy of \(l\)-adic Galois representations with small residual image. J. Inst. Math. Jussieu 11(4), 855–920 (2012). (With an appendix by Robert Guralnick. Florian Herzig, Richard Taylor and Thorne)

    Article  MathSciNet  MATH  Google Scholar 

  44. Thorne, J.A.: Raising the level for \({\rm GL}_{n}\). Forum Math. Sigma 2, e16-35 (2014)

    Article  MathSciNet  Google Scholar 

  45. Thorne, J.A.: Automorphy lifting for residually reducible \(l\)-adic Galois representations. J. Am. Math. Soc. 28(3), 785–870 (2015)

    Article  MathSciNet  Google Scholar 

  46. Taylor, R., Wiles, A.: Ring-theoretic properties of certain Hecke algebras. Ann. of Math. 41(3), 553–572 (1995)

  47. Wiles, A.: On ordinary \(\lambda \)-adic representations associated to modular forms. Invent. Math. 94(3), 529–573 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wiles, A.: Modular elliptic curves and Fermat’s last theorem. Ann. Math. 141(3), 443–551 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

During the period this research was conducted, Jack Thorne served as a Clay Research Fellow. I would like to thank Chandrashekhar Khare for inspiring conversations, and for showing me his papers [26, 27]. I would also like to thank Toby Gee and David Geraghty for useful conversations, and the anonymous referee for their detailed comments and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack A. Thorne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thorne, J.A. Automorphy of some residually dihedral Galois representations. Math. Ann. 364, 589–648 (2016). https://doi.org/10.1007/s00208-015-1214-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1214-z

Mathematics Subject Classification

Navigation