Skip to main content
Log in

The \(L^2\)-cohomology of a bounded smooth Stein Domain is not necessarily Hausdorff

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We give an example of a pseudoconvex domain in a complex manifold whose \(L^2\)-Dolbeault cohomology is non-Hausdorff, yet the domain is Stein. The domain is a smoothly bounded Levi-flat domain in a two complex-dimensional compact complex manifold. The domain is biholomorphic to a product domain in \({\mathbb {C}}^2\), hence Stein. This implies that for \(q>0\), the usual Dolbeault cohomology with respect to smooth forms vanishes in degree \((p,q)\). But the \(L^2\)-Cauchy–Riemann operator on the domain does not have closed range on \((2,1)\)-forms and consequently its \(L^2\)-Dolbeault cohomology is not Hausdorff.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrett, D.E.: Biholomorphic domains with inequivalent boundaries. Invent. Math. 85, 373–377 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barrett, D.E.: Global convexity properties of some families of three-dimensional compact Levi-flat hypersurfaces. Trans. Am. Math. Soc. 332, 459–474 (1992)

    Article  MATH  Google Scholar 

  3. Boas, H.P., Straube, E.J.: Global regularity of the \({\overline{\partial }}\)-Neumann problem: a survey of the \(L^{2}\)-Sobolev theory. In: Proceedings of Several Complex Variables (Berkeley, CA, 1995–1996), Math. Sci. Res. Inst. Publ. vol. 37, pp. 79–111. Cambridge University Press, Cambridge (1999)

  4. Brüning, J., Lesch, M.: Hilbert complexes. J. Funct. Anal. 108, 88–132 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cao, J., Shaw, M.-C., Wang, L.: Estimates for the \(\overline{\partial }\)-Neumann problem and nonexistence of \(C^2\)-Levi-flat hypersurfaces in \(\mathbb{CP}^n\). Math. Z. 248, 183–221 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chakrabarti, D., Shaw, M.-C.: \(L^2\) Serre duality on domains in complex manifolds and applications. Trans. Am. Math. Soc. 364, 3529–3554 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen, S.-C., Shaw, M.-C.: Partial differential equations in several complex variables. In: Proceedings of AMS/IP Studies in Advanced Mathematics, vol. 19. American Mathematical Society/International Press, Providence/Boston (2001)

  8. Diederich, K., Fornaess, J.E.: Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions. Invent. Math. 39, 129–141 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  9. Diederich, K., Ohsawa, T.: A Levi problem on two-dimensional complex manifolds. Math. Ann. 261, 255–261 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  10. Diederich, K., Ohsawa, T.: On certain existence questions for pseudoconvex hypersurfaces in complex manifolds. Math. Ann. 323, 397–403 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Folland, G.B., Kohn, J.J.: The Neumann problem for the Cauchy–Riemann complex. In: Proceedings of Annals of Mathematics Studies, vol. 75. Princeton University Press/University of Tokyo Press, Princeton/Tokyo (1972)

  12. Gunning, R.C., Rossi, H.: Analytic Functions of Several Complex Variables. Prentice-Hall Inc, Englewood Cliffs (1965)

    MATH  Google Scholar 

  13. Hörmander, L.: An introduction to complex analysis in several variables, 3rd edn. North-Holland Mathematical Library 7, North-Holland Publishing Co., Amsterdam (1990)

  14. Kazama, H.: \({\overline{\partial }}\)-cohomology of \((H, C)\)-groups. Publ. Res. Inst. Math. Sci. 20, 297–317 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kohn, J.J., Nirenberg, L.: An algebra of pseudo-differential operators. Comm. Pure Appl. Math. 18, 269–305 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kohn, J.J., Nirenberg, L.: Noncoercive boundary value problems. Comm. Pure Appl. Math. 18, 443–492 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kohn, J.J.: Global regularity for \(\overline{\partial }\) on weakly pseudoconvex manifolds. Trans. Am. Math. Soc. 181, 273–292 (1973)

    MATH  MathSciNet  Google Scholar 

  18. Kohn, J.J., Rossi, H.: On the extension of holomorphic functions from the boundary of a complex manifold. Ann. Math. 81, 451–472 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  19. Laurent-Thiébaut, C., Shaw, M.-C.: On the Hausdorff property of some Dolbeault cohomology groups. Math. Zeit. 274, 1165–1176 (2013)

    Article  MATH  Google Scholar 

  20. Lions, J.-L., Magenes, E.: Non-homogeneous boundary value problems and applications. vol. I. Translated from the French by P. Kenneth. Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer, New York (1972)

  21. Lupacciolu, G.: Holomorphic extension to open hulls. Annali della Scuola Normale Superiore di Pisa 23, 363–382 (1996)

    MATH  MathSciNet  Google Scholar 

  22. Malgrange, B.: La cohomologie d’une variété analytique complexe à bord pseudo-convexe n’est pas nécessairement séparée. C. R. Acad. Sci. Paris Sér. A-B 280, Aii, A93–A95 (1975)

  23. Ohsawa, T.: A Stein domain with smooth boundary which has a product structure. Publ. Res. Inst. Math. Sci. 18, 1185–1186 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ohsawa, T., Sibony, N.: Bounded P.S.H functions and pseudoconvexity in Kähler manifolds. Nagoya Math. J. 149, 1–8 (1998)

    MATH  MathSciNet  Google Scholar 

  25. Serre, J.-P.: Un théorème de dualité. Comment. Math. Helv. 29, 9–26 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  26. Shaw, M.-C.: The closed range property for \({\overline{\partial }}\) for domains with pseudoconcave boundary. In: Proceedings of Complex Analysis, Trends in Mathematics. Springer, Basel, pp. 307–320 (2010)

  27. Straube, E.J.: Lectures on the \(L^2\)-Sobolev Theory of the \(\overline{\partial }\)-Neumann Problem. European Mathematical Society, Zürich (2010)

    Google Scholar 

  28. Taylor, M.E.: Partial differential equations. I. Basic theory. Applied Mathematical Sciences, vol. 115. Springer, New York (1996)

Download references

Acknowledgments

Debraj Chakrabarti would like to thank K. Sandeep for helpful discussions on fractional Sobolev spaces. Mei-Chi Shaw would like to thank David Barrett for pointing out his paper [1] which inspires the present work. Both authors would like to thank Sophia Vassiliadou for her comments on a previous version of the manuscript, and the referee for numerous helpfull suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-Chi Shaw.

Additional information

Debraj Chakrabarti was partially supported by a grant from the Simons Foundation (#316632), the Indo-US Virtual Institute for Mathematical and Statistical Sciences (VI-MSS), and an Early Career internal grant from Central Michigan University. Mei-Chi Shaw was partially supported by National Science Foundation grants DMS-1101415 and DMS-1362175.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakrabarti, D., Shaw, MC. The \(L^2\)-cohomology of a bounded smooth Stein Domain is not necessarily Hausdorff. Math. Ann. 363, 1001–1021 (2015). https://doi.org/10.1007/s00208-015-1193-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1193-0

Navigation