Mathematische Annalen

, Volume 361, Issue 3, pp 909–925

Compatible systems of symplectic Galois representations and the inverse Galois problem III. Automorphic construction of compatible systems with suitable local properties

  • Sara Arias-de-Reyna
  • Luis V. Dieulefait
  • Sug Woo Shin
  • Gabor Wiese
Article

DOI: 10.1007/s00208-014-1091-x

Cite this article as:
Arias-de-Reyna, S., Dieulefait, L.V., Shin, S.W. et al. Math. Ann. (2015) 361: 909. doi:10.1007/s00208-014-1091-x

Abstract

This article is the third and last part of a series of three articles about compatible systems of symplectic Galois representations and applications to the inverse Galois problem. This part proves the following new result for the inverse Galois problem for symplectic groups. For any even positive integer \(n\) and any positive integer \(d\), \(\mathrm {PSp}_n(\mathbb {F}_{\ell ^d})\) or \(\mathrm {PGSp}_n(\mathbb {F}_{\ell ^d})\) occurs as a Galois group over the rational numbers for a positive density set of primes \(\ell \). The result depends on some work of Arthur’s, which is conditional, but expected to become unconditional soon. The result is obtained by showing the existence of a regular, algebraic, self-dual, cuspidal automorphic representation of \(\hbox {GL}_n({\mathbb {A}}_\mathbb {Q})\) with local types chosen so as to obtain a compatible system of Galois representations to which the results from Part II of this series apply.

Mathematics Subject Classification

11F80 (Galois representations) 12F12 (Inverse Galois theory) 

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sara Arias-de-Reyna
    • 1
  • Luis V. Dieulefait
    • 2
  • Sug Woo Shin
    • 3
    • 4
  • Gabor Wiese
    • 1
  1. 1.Faculté des Sciences, de la Technologie et de la CommunicationUniversité du LuxembourgLuxembourgLuxembourg
  2. 2.Departament d’Algebra i Geometria, Facultat de MatemàtiquesUniversitat de BarcelonaBarcelonaSpain
  3. 3.Department of MathematicsMITCambridgeUSA
  4. 4.Korea Institute for Advanced StudySeoulRepublic of Korea