Skip to main content
Log in

Curved Koszul duality theory

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

A Correction to this article was published on 27 June 2023

This article has been updated

Abstract

We extend the bar–cobar adjunction to operads and properads, not necessarily augmented. Due to the default of augmentation, the objects of the dual category are endowed with a curvature. As usual, the bar–cobar construction gives a cofibrant resolution for any properad. Applied to the properad encoding unital and counital Frobenius algebras, notion which appears in 2d-TQFT, it defines the associated notion up to homotopy. We further define a curved Koszul duality theory for operads or properads presented with quadratic, linear and constant relations. This provides smaller resolutions. We apply this new theory to study the homotopy theory and the cohomology theory of unital associative algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Abrams L.: Two-dimensional topological quantum field theories and Frobenius algebras. J. Knot Theory Ramifications 5, 569–587 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boardman, J.M., Vogt, R.M.: Homotopy invariant algebraic structures on topological spaces. In: Lecture Notes in Mathematics, vol. 347. Springer, Berlin (1973)

  3. Fresse, B.: Modules over operads and functors. In: Lecture Notes in Mathematics, vol. 1967. Springer, Berlin (2009)

  4. Fukaya K.: Floer homology and mirror symmetry. II. Adv. Stud. Pure Math. 34, 31–127 (2002)

    MathSciNet  Google Scholar 

  5. Fukaya, K., Oh, Y., Ohta, H., Ono, K.: Lagrangian Intersection and Floer Theory: Anomaly and Obstruction. AMS/IP Studies in Advanced Mathematics, vol. 46.1–46.2. Amer. Math. Soc. and International Press, Providence (2009)

  6. Getzler, E., Jones, J.D.S.: Operads, homotopy algebra and iterated integrals for double loop spaces. Preprint (1994). http://arxiv.org/hep-th/9403055

  7. Ginzburg V., Kapranov M.: Koszul duality for operads. Duke Math. J 76, 203–272 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gàlvez-Carrillo, I., Tonks, A., Vallette, B.: Homotopy Batalin-Vilkovisky algebras. arXiv:0907.2246 (2009)

  9. Hochschild G.: On the cohomology groups of an associative algebra. Ann. Math. 46(2), 58–67 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kadeishvili T.: The algebraic structure in the homology of an A(∞)-algebra. Soobshch. Akad. Nauk Gruzin. SSR 2(108), 249–252 (1983)

    MathSciNet  Google Scholar 

  11. Kock, J.: Frobenius algebras and 2D topological quantum field theories. In: London Mathematical Society Student Texts, vol. 59. Cambridge University Press, Cambridge (2004)

  12. Kontsevich, M., Soibelman, Y.: Notes on A -algebras, A -categories and non-commutative geometry. In: Homological mirror symmetry. Lecturer Notes in Physics, vol. 757, pp. 153–219. Springer, Berlin (2009)

  13. Lefevre-Hasegawa, K.: Sur les A-infini catégories. arXiv:0310337 (2003)

  14. Loday, J.-L.: Cyclic homology. Grundlehren der Mathematischen Wissenschaften, vol. 301, 2nd edn. Springer, Berlin (1998)

  15. Loday, J.-L.: Dialgebras. In: Dialgebras and Related Operads. Lecture Notes in Math., vol. 1763, pp. 7–66. Springer, Berlin (2001)

  16. Loday, J.-L., Vallette, B.: Algebraic operads. http://math.unice.fr/~brunov/Operades.html

  17. Lyubashenko V.: Category of A categories. Homology, Homotopy Appl 5(1), 1–48 (2003)

    MathSciNet  MATH  Google Scholar 

  18. Lyubashenko V.: Homotopy unital A -algebras. J. Algebra 329, 190–212 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lyubashenko, V., Manzyuk, O.: Unital A infinity categories. In: Problems of Topology and Related Questions, vol. 3, pp. 235–268 (2006)

  20. Maclane, S.: Categories for the working mathematician. In: Graduate Texts in Mathematics, vol. 5, 2nd edn. Springer, New York, Berlin, Heidelberg (1998)

  21. Markl M.: Ideal perturbation lemma. Comm. Algebra 29, 5209–5232 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Markl, M.: Transfering A (strongly homotopy associative) structures. In: Proceedings of the 25th Winter School “Geometry and Physics”, pp. 139–151. Circ. Mat. Palermo, Palermo (2006)

  23. Markl M., Shnider S., Stasheff, J.: Operads in algebra, topology and physics. In: Mathematical Surveys and Monographs, vol. 96. American Mathematical Society, Providence (2002)

  24. May, J.P.: The geometry of iterated loop spaces. In: Lectures Notes in Mathematics, vol. 271. Springer, Berlin (1972)

  25. Merkulov S.: Strongly homotopy algebras of a K ähler manifold. Int. Math. Res. Notices 3, 153–164 (1999)

    Article  MathSciNet  Google Scholar 

  26. Merkulov, S., Vallette, B.: Deformation theory of representation of prop(erad)s II. J. Reine Angew. Math. (2007, to appear). arXiv:0707.0889

  27. Merkulov S., Vallette B.: Deformation theory of representation of prop(erad)s I. J. Reine Angew. Math. 634, 51–106 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Millès J.: André-Quillen cohomology of algebras over an operad. Adv. Math 226(6), 5120–5164 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nicolás P.: The bar derived category of a curved dg algebra. J. Pure Appl. Algebra 212(12), 2633–2659 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Polishchuk, A., Positselski, L.: Quadratic algebras. University Lecture Series, vol 37. American Mathematical Society, Providence (2005)

  31. Positselski, L.: Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence. Mem. Amer. Math. Soc. 212(996), vi+133 (2011)

  32. Positsel′skĭ L.E.: Nonhomogeneous quadratic duality and curvature. Funktsional. Anal. i Prilozhen. 27, 57–66, 96 (1993)

    Article  Google Scholar 

  33. Priddy S.B.: Koszul resolutions. Trans. Am. Math. Soc. 152, 39–60 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  34. Stasheff, J.D.: Homotopy associativity of H-spaces. I, II. Trans. Am. Math. Soc. 108, 275–292 (1963); ibid 108, 1963

    Google Scholar 

  35. Vallette B.: A Koszul duality for PROPs. Trans. Am. Math. Soc 359(10), 4865–4943 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Vallette B.: Manin products, Koszul duality, Loday algebras and Deligne conjecture. J. Reine Angew. Math. 620, 105–164 (2008)

    MathSciNet  MATH  Google Scholar 

  37. van der Laan, P.: Coloured Koszul duality and strongly homotopy operads. arXiv:math/0312147 (2003)

  38. Weibel, C.A.: An introduction to homological algebra. In: Cambridge Studies in Advanced Mathematics, vol. 38. Cambridge University Press, Cambridge (1994)

  39. Wilson, S.O.: Free Frobenius algebra on the differential forms of a manifold. Preprint (2007). http://arxiv.org/pdf/0710.3550v2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Millès.

Additional information

J. Hirsh was supported by a National Science Foundation Graduate Research Fellowship and J. Millès was supported by the ANR grant JCJC06 OBTH.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirsh, J., Millès, J. Curved Koszul duality theory. Math. Ann. 354, 1465–1520 (2012). https://doi.org/10.1007/s00208-011-0766-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-011-0766-9

Mathematics Subject Classification (2000)

Navigation