Skip to main content
Log in

Modularity of Galois traces of class invariants

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Zagier showed that the Galois traces of the values of j-invariant at CM points are Fourier coefficients of a weakly holomorphic modular form of weight 3/2 and Bruinier–Funke expanded his result to the sums of the values of arbitrary modular functions at Heegner points. In this paper, we identify the Galois traces of real-valued class invariants with modular traces of the values of certain modular functions at Heegner points so that they are Fourier coefficients of weight 3/2 weakly holomorphic modular forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkin O., Morain F.: Elliptic curves and primality proving. Math. Comp. 61, 29–68 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berndt B.C., Chan H.H., Kang S.-Y., Zhang L.-C.: A certain quotient of eta functions found in Ramanujan’s lost noptebook. Pacific J. Math. 202, 267–304 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Birch B.: Weber’s class invariants. Mathematika 16, 283–294 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bröker, R.M.: Constructing elliptic curves of prescribed order, Ph.D. Thesis, Universiteit Leiden (2006)

  5. Bruinier J.H., Funke J.: Traces of CM-values of modular functions. J. Reine Angew. Math. 594, 1–33 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bruinier J.H., Jenkins P., Ono K.: Hilbert class polynomials and traces of singular moduli. Math. Ann 334, 373–393 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chan H.H., Gee A., Tan V.: Cubic singular moduli, Ramanujan’s class invariants λ n and the explicit Shimura reciprocity law. Pacific J. Math. 208, 23–37 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cox D.: Primes of the form x 2 + ny 2. Wiley, London (1989)

    Google Scholar 

  9. Deuring M.: Die Klassenkörper der komplexen Multiplikation. in Enz. Math. Wiss. Band I 2’, Heft 10, Teil II, Stuttgart (1958)

  10. Duke W.: Modular functions and the uniform distribution of CM points. Math. Ann. 334, 241–252 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gee A.: Class invariants by Shimura’s reciprocity law. J. Théor. Nombre Bordeaux 11, 45–72 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gee, A.: Class fields by Shimura reciprocity. Ph. D. Thesis, Universiteit van Amsterdam (2001)

  13. Gee, A., Stevenhagen, P.: Generating class fields using Shimura reciprocity. Proceedings of the Third International Symposium on Algorithmic Number Theory, Lecture Notes in Computer Sciences, vol. 1423, pp. 441–453. Springer-Verlag, USA (1998)

  14. Gross B., Kohnen W., Zagier D.: Heegner points and derivatives of L-seires, II. Math. Ann. 278, 497–562 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hart W.: Schläfli modular equations for generalized Weber functions. Ramanujan J. 15, 435–468 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hajir F., Villegas F.R.: Explicit elliptic units, I. Duke Math. J. 90(3), 495–521 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kaneko, M.: The Fourier coefficients and the singular moduli of the elliptic function j(τ). Memoirs of the faculty of engineering and design. vol. 44. Kyoto Institute of Technology (1996)

  18. Lang, S.: Elliptic functions, 2nd edn, Springer GTM 112 (1987)

  19. Morain F.: Primality proving using elliptic curves: An update. in Algorithmic Number Theory. Springer LNCS 1423, 111–130 (1988)

    MathSciNet  Google Scholar 

  20. Ono, K.: Unearthing the visions of a master: Harmonic Maass forms and number theory. Harvard-MIT Current Developments in Mathematics. International Press, Somerville (2008)

  21. Ramanujan, S.: The Lost Notebook and other unpublished papers, Narosa, New Delhi (1988)

  22. Schertz R.: ‘Die singulären Werte der Weberschen Funktionen \({\mathfrak{f}, \mathfrak{f}_1, \mathfrak{f}_2, \gamma_2, \gamma_3}\). J. Reine Angew. Math. 286/287, 46–74 (1976)

    MathSciNet  Google Scholar 

  23. Schertz R.: Weber’s class invariants revisted. J. Théor. Nombre Bordeaux 14, 325–343 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shimura G.: Introduction to the arithmetic theory of automorphic forms. Princeton University Press, New Jersey (1971)

    Google Scholar 

  25. Stevenhagen, P.: Hilbert’s 12th problem, complex multiplication and Shimura reciprocity. In: Miyake, K., (ed.) Class field theory-its centenary and prospect. Adv. Studies pure math. 30, 161–176 (2001)

  26. Weber H.: Lehrbuch der Algebra, dritter Band. Friedrich Vieweg und Sohn, Braunschweig (1908)

    Google Scholar 

  27. Yui N., Zagier D.: On the singular values of Weber modular functions. Math. Comp. 66(220), 1645–1662 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zagier D.: Traces of singular moduli. In: Bogomolov, F., Katzarkov, L. (eds) Motives, Polylogarithms and Hodge Theory, Part I, pp. 211–244. International Press, Somerville (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Heon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, D., Kang, SY. & Kim, C.H. Modularity of Galois traces of class invariants. Math. Ann. 353, 37–63 (2012). https://doi.org/10.1007/s00208-011-0671-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-011-0671-2

Mathematics Subject Classification (2000)

Navigation