Skip to main content
Log in

Pointwise estimates for a class of non-homogeneous Kolmogorov equations

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We consider a class of ultraparabolic differential equations that satisfy the Hörmander’s hypoellipticity condition and we prove that the weak solutions to the equation with measurable coefficients are locally bounded functions. The method extends the Moser’s iteration procedure and has previously been employed in the case of operators verifying a further homogeneity assumption. Here we remove that assumption by proving some potential estimates and some ad hoc Sobolev type inequalities for solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonelli F., Barucci E. and Mancino M.E. (2001). Asset pricing with a forward–backward stochastic differential utility. Econ. Lett. 72: 151–157

    Article  MATH  MathSciNet  Google Scholar 

  2. Antonelli F. and Pascucci A. (2002). On the viscosity solutions of a stochastic differential utility problem. J. Differ. Equ. 186: 69–87

    Article  MathSciNet  Google Scholar 

  3. Barucci E., Polidoro S. and Vespri V. (2001). Some results on partial differential equations and Asian options. Math. Models Methods Appl. Sci. 11: 475–497

    Article  MATH  MathSciNet  Google Scholar 

  4. Bhar R. and Chiarella C. (1997). The transformation of Heath–Jarrow–Morton models to Markovian systems. Eur. J. Finance 3: 1–26

    Article  Google Scholar 

  5. Bramanti M., Cerutti M.C. and Manfredini M. (1996). L p estimates for some ultraparabolic operators with discontinuous coefficients. J. Math. Anal. Appl. 200: 332–354

    Article  MATH  MathSciNet  Google Scholar 

  6. Cercignani C. (1988). The Boltzmann equation and its applications. Springer, New York

    MATH  Google Scholar 

  7. Citti G., Pascucci A. and Polidoro S. (2001). Regularity properties of viscosity solutions of a non-Hörmander degenerate equation. J. Math. Pures Appl. 80(9): 901–918

    Article  MATH  MathSciNet  Google Scholar 

  8. Desvillettes L. and Villani C. (2001). On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker–Planck equation. Comm. Pure Appl. Math. 54: 1–42

    Article  MATH  MathSciNet  Google Scholar 

  9. Di Francesco M. and Pascucci A. (2004). On the complete model with stochastic volatility by Hobson and Rogers. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460: 3327–3338

    Article  MATH  MathSciNet  Google Scholar 

  10. Di Francesco, M., Pascucci, A.: On a class of degenerate parabolic equations of Kolmogorov type. AMRX Appl. Math. Res. Express, pp. 77–116 (2005)

  11. Di Francesco M. and Polidoro S. (2006). Harnack inequality for a class of degenerate parabolic equations of Kolmogorov type. Adv. Diff. Equ. 11: 1261–1320

    MathSciNet  MATH  Google Scholar 

  12. Eidelman S.D., Ivasyshen S.D. and Malytska H.P. (1998). A modified Levi method: development and application. Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki 5: 14–19

    MathSciNet  Google Scholar 

  13. Folland G.B. (1975). Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat. 13: 161–207

    Article  MATH  MathSciNet  Google Scholar 

  14. Heath D.C., Jarrow R.A. and Morton A. (1992). Bond pricing and the term structure of interest rates. Econometrica 60: 77–106

    Article  MATH  Google Scholar 

  15. Hobson D.G. and Rogers L.C.G. (1998). Complete models with stochastic volatility. Math. Finance 8: 27–48

    Article  MATH  MathSciNet  Google Scholar 

  16. Hörmander L. (1967). Hypoelliptic second order differential equations. Acta Math. 119: 147–171

    Article  MATH  MathSciNet  Google Scholar 

  17. Il′in A.M. (1964). On a class of ultraparabolic equations. Dokl. Akad. Nauk SSSR 159: 1214–1217

    MathSciNet  Google Scholar 

  18. Kupcov, L.P.: The fundamental solutions of a certain class of elliptic–parabolic second order equations. Differencial′nye Uravnenija 8, pp. 1649–1660, 1716 (1972)

    Google Scholar 

  19. Lanconelli, E., Polidoro, S.: On a class of hypoelliptic evolution operators. Rend. Sem. Mat. Univ. Politec. Torino 52, 29–63 (1994). Partial differential equations, II (Turin, 1993)

    Google Scholar 

  20. Lifschitz, E.M., Pitaevskii, L.P.: Teoreticheskaya fizika (“Landau-Lifshits”). Tom 10, “Nauka”, Moscow Fizicheskaya kinetika (Physical kinetics) (1979)

  21. Lions P.-L. (1994). On Boltzmann and Landau equations. Philos. Trans. R. Soc. Lond. Ser. A 346: 191–204

    Article  MATH  Google Scholar 

  22. Lunardi A. (1997). Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in \(\mathbb R^N\). Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24(4): 133–164

    MATH  MathSciNet  Google Scholar 

  23. Manfredini M. (1997). The Dirichlet problem for a class of ultraparabolic equations. Adv. Diff. Equ. 2: 831–866

    MATH  MathSciNet  Google Scholar 

  24. Manfredini M. and Polidoro S. (1998). Interior regularity for weak solutions of ultraparabolic equations in divergence form with discontinuous coefficients. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 1(8): 651–675

    MATH  MathSciNet  Google Scholar 

  25. Morbidelli, D.: Spazi frazionari di tipo Sobolev per campi vettoriali e operatori di evoluzione di tipo Kolmogorov–Fokker–Planck, Tesi di Dottorato di Ricerca, Università di Bologna, Bologna (1998)

  26. Moser J. (1964). A Harnack inequality for parabolic differential equations. Comm. Pure Appl. Math. 17: 101–134

    Article  MATH  MathSciNet  Google Scholar 

  27. Moser J. (1971). On a pointwise estimate for parabolic differential equations. Comm. Pure Appl. Math. 24: 727–740

    Article  MATH  MathSciNet  Google Scholar 

  28. Pascucci A. and Polidoro S. (2004). The Moser’s iterative method for a class of ultraparabolic equations. Commun. Contemp. Math. 6: 395–417

    Article  MATH  MathSciNet  Google Scholar 

  29. Polidoro S. (1994). On a class of ultraparabolic operators of Kolmogorov–Fokker–Planck type. Matematiche (Catania) 49: 53–105

    MATH  MathSciNet  Google Scholar 

  30. Polidoro S. (1997). A global lower bound for the fundamental solution of Kolmogorov–Fokker–Planck equations. Arch. Ration. Mech. Anal. 137: 321–340

    Article  MATH  MathSciNet  Google Scholar 

  31. Polidoro S. and Ragusa M.A. (1998). Sobolev–Morrey spaces related to an ultraparabolic equation. Manuscr. Math. 96: 371–392

    Article  MATH  MathSciNet  Google Scholar 

  32. Risken H. (1989). The Fokker–Planck equation: Methods of solution and applications, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  33. Ritchken P. and Sankarasubramanian L. (1995). Volatility structures of forward rates and the dynamics of term structure. Math. Finance 5: 55–72

    Article  MATH  Google Scholar 

  34. Rothschild L.P. and Stein E.M. (1976). Hypoelliptic differential operators and nilpotent groups. Acta Math. 137: 247–320

    Article  MathSciNet  Google Scholar 

  35. Šatyro J.I. (1971). The smoothness of the solutions of certain degenerate second order equations. Mat. Zametki 10: 101–111

    MathSciNet  Google Scholar 

  36. Weber M. (1951). The fundamental solution of a degenerate partial differential equation of parabolic type. Trans. Am. Math. Soc. 71: 24–37

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Polidoro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cinti, C., Pascucci, A. & Polidoro, S. Pointwise estimates for a class of non-homogeneous Kolmogorov equations. Math. Ann. 340, 237–264 (2008). https://doi.org/10.1007/s00208-007-0147-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0147-6

Mathematics Subject Classification (2000)

Navigation