Skip to main content
Log in

Linear Inviscid Damping in Gevrey Spaces

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove linear inviscid damping near a general class of monotone shear flows in a finite channel, in Gevrey spaces. This is an essential step towards proving nonlinear inviscid damping for general shear flows that are not close to the Couette flow, which is a major open problem in 2d Euler equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bedrossian, J., Masmoudi, N.: Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations. Publ. Math. l’IHES122, 195–300, 2015

    Article  MathSciNet  Google Scholar 

  2. Bedrossian, J., Coti Zelati, M., Vicol, V.: Vortex axisymmetrization, inviscid damping, and vorticity depletion in the linearized 2D Euler equations. arXiv:1711.03668

  3. Bedrossian, J.: Nonlinear echoes and Landau damping with insufficient regularity 2016. arXiv:1605.06841

  4. Bouchet, F., Morita, H.: Large time behavior and asymptotic stability of the 2D Euler and linearized Euler equations. Phys. D239, 948–966, 2010

    Article  MathSciNet  Google Scholar 

  5. Case, K.: Stability of inviscid plane Couette flow. Phys. Fluids3, 143–148, 1960

    Article  ADS  MathSciNet  Google Scholar 

  6. Deng, Y., Masmoudi, N.: Long time instability of the Couette flow in low Gevrey spaces, preprint 2018. arXiv:1803.01246

  7. Faddeev, L.: On the theory of the stability of plane-parallel flows of an ideal fluid. Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova Akademii Nauk SSSR, Vol. 21, pp 164–172, 1971

  8. Grenier, E., Nguyen, T., Rousset, F., Soffer, A.: Linear inviscid damping and enhanced viscous dissipation of shear flows by using the conjugate operator method. arXiv:1804.08291

  9. Ionescu, A., Jia, H.: Inviscid damping near shear flows in a channel, preprint. arXiv:1808.04026

  10. Ionescu, A., Jia, H.: Axi-symmetrization near point vortex solutions for the 2D Euler equation, preprint. arXiv:1904.09170

  11. Jia, H.: Linear inviscid damping near monotone shear flows, preprint. arXiv:1902.06849

  12. Kelvin, L.: Stability of fluid motion-rectilinear motion of viscous fluid between two plates. Phi Mag. 24, 155, 1887

    Google Scholar 

  13. Lin, Z., Zeng, C.: Inviscid dynamical structures near Couette flow. Arch. Ration. Mech. Anal. 200, 1075–1097, 2011

    Article  MathSciNet  Google Scholar 

  14. Lin, Z.: Instability of some ideal plane flows. SIAM J. Math. Anal. 35(2), 318–356, 2003

    Article  MathSciNet  Google Scholar 

  15. Mouhot, C., Villani, C.: On Landau damping. Acta Math. 207, 29–201, 2011

    Article  MathSciNet  Google Scholar 

  16. Orr, W.: The stability or instability of steady motions of a perfect liquid and of a viscous liquid. Part I: a perfect liquid. Proc. R. Ir. Acad., A Math. Phys. Sci. 27, 9–68, 1907

  17. Rayleigh, L.: On the stability or instability of certain fluid motions. Proc. Lond. Math. Soc. S1–11, 57, 1880

    MathSciNet  MATH  Google Scholar 

  18. Rosencrans, S., Sattinger, D.: On the spectrum of an operator occurring in the theory of Hydrodynamics stability. J. Math. Phys. 45, 289–300, 1966

    Article  MathSciNet  Google Scholar 

  19. Stepin, S.: Nonself-adjoint Friedrichs model in hydrodynamic stability. Funct. Anal. Appl. Vol. 29, No. 2, 1995. Translated from Funktsionaltnyi Analiz i Ego Prilozheniya, Vol. 29, No. 2, pp. 22–35, April–June, 1995. Original article submitted (August 3, 1994)

    Article  MathSciNet  Google Scholar 

  20. Yamanaka, T.: A new higher order chain rule and Gevrey class. Ann. Glob. Anal. Geom. 7, 179–203, 1989

    Article  MathSciNet  Google Scholar 

  21. Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping for a class of monotone shear flow in Sobolev spaces. Commun. Pure Appl. Math. 71, 617–687, 2018

    Article  MathSciNet  Google Scholar 

  22. Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping and vorticity depletion for shear flows. arXiv:1704.00428

  23. Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping and enhanced dissipation for the Kolmogorov flow. arXiv:1711.01822

  24. Zillinger, C.: Linear inviscid damping for monotone shear flows. Trans. Am. Math. Soc. 369, 8799–8855, 2017

    Article  MathSciNet  Google Scholar 

  25. Zillinger, C.: Linear inviscid damping for monotone shear flows in a finite periodic channel, boundary effects, blow-up and critical Sobolev regularity. Arch. Ration. Mech. Anal. 221, 1449–1509, 2016

    Article  MathSciNet  Google Scholar 

  26. Zelati, M.C., Zillinger, C.: On degenerate circular and shear flows: the point vortex and power law circular flows. arXiv:1801.07371

Download references

Acknowledgements

We are grateful to the anonymous referee for invaluable suggestions that improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Jia.

Additional information

Communicated by P. Constantin

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported in part by DMS-1600779

Appendix A: Gevrey Spaces and Gevrey Bounds on the Green’s Function

Appendix A: Gevrey Spaces and Gevrey Bounds on the Green’s Function

1.1 Gevrey Spaces

We review first some general properties of the Gevrey spaces of functions.

We start with a characterization of the Gevrey spaces on the physical side. See Lemma A2 in [9] for the elementary proof.

Lemma A.1

(i) Suppose that \(0<s<1\), \(K>1\), and \(g\in C^{\infty }({\mathbb {T}}\times {\mathbb {R}})\) with \(\mathrm{supp}\,g\subseteq {\mathbb {T}}\times [-L,L]\) satisfies the bounds

$$\begin{aligned} \big |D^{\alpha }g(x)\big |\le K^{m}(m+1)^{m/s}, \end{aligned}$$
(A.1)

for all integers \(m\ge 0\) and multi-indeces \(\alpha \) with \(|\alpha |=m\). Then

$$\begin{aligned} \big |{\widetilde{g}}(k,\xi )\big |\lesssim _{K,s} Le^{-\mu |k,\xi |^s}, \end{aligned}$$
(A.2)

for all \(k\in {\mathbb {Z}}, \xi \in {\mathbb {R}}\) and some \(\mu =\mu (K,s)>0\).

(ii) Conversely, assume that \(\mu >0\), \(s\in (0,1)\), and \(g:{\mathbb {T}}\times {\mathbb {R}}\rightarrow {\mathbb {C}}\) satisfies

$$\begin{aligned} \big \Vert g\big \Vert _{{\mathcal {G}}^{\mu ,s}({\mathbb {T}}\times {\mathbb {R}})}\le 1. \end{aligned}$$
(A.3)

Then there is \(K=K(s,\mu )>1\) such that, for any \(m\ge 0\) and all multi-indices \(\alpha \) with \(|\alpha |\le m\),

$$\begin{aligned} \left| D^{\alpha }g(x)\right| \lesssim _{\mu ,s} K^m(m+1)^{m/s}. \end{aligned}$$
(A.4)

The physical space characterization of Gevrey functions is useful when studying compositions and algebraic operations of functions. For any domain \(D\subseteq {\mathbb {T}}\times {\mathbb {R}}\) (or \(D\subseteq {\mathbb {R}}\)) and parameters \(s\in (0,1)\) and \(M\ge 1\) we define the spaces

$$\begin{aligned} \widetilde{{\mathcal {G}}}^{s}_M(D):= & {} \big \{g:D\rightarrow {\mathbb {C}}:\,\Vert g\Vert _{\widetilde{{\mathcal {G}}}^{s}_M(D)} \nonumber \\:= & {} \sup _{x\in D,\,m\ge 0,\,|\alpha |\le m}|D^\alpha g(x)|M^{-m}(m+1)^{-m/s}<\infty \big \}. \end{aligned}$$
(A.5)

Lemma A.2

(i) Assume \(s\in (0,1)\), \(M\ge 1\), and \(g_1,g_2\in \widetilde{{\mathcal {G}}}^{s}_M(D)\). Then \(g_1g_2\in \widetilde{{\mathcal {G}}}^{s}_{M'}(D)\) and

$$\begin{aligned} \Vert g_1g_2\Vert _{\widetilde{{\mathcal {G}}}^{s}_{M'}(D)}\lesssim \Vert g_1\Vert _{\widetilde{{\mathcal {G}}}^{s}_{M}(D)}\Vert g_2\Vert _{\widetilde{{\mathcal {G}}}^{s}_{M}(D)} \end{aligned}$$

for some \(M'=M'(s,M)\ge M\). Similarly, if \(g_1\ge 1\) in D then \(\Vert (1/g_1)\Vert _{\widetilde{{\mathcal {G}}}^{s}_{M'}(D)}\lesssim 1\).

(ii) Suppose \(s\in (0,1)\), \(M\ge 1\), \(I_1\subseteq {\mathbb {R}}\) is an interval, and \(g:{\mathbb {T}}\times I_1\rightarrow {\mathbb {T}}\times I_2\) satisfies

$$\begin{aligned} |D^\alpha g(x)|\le M^m(m+1)^{m/s}\qquad \text { for any }x\in {\mathbb {T}}\times I_1,\,m\ge 1,\text { and }|\alpha |\in [1,m].\nonumber \\ \end{aligned}$$
(A.6)

If \(K\ge 1\) and \(h\in {\widetilde{G}}^s_K({\mathbb {T}}\times I_2)\) then \(h\circ g\in {\widetilde{G}}^s_L({\mathbb {T}}\times I_1)\) for some \(L=L(s,K,M)\ge 1\) and

$$\begin{aligned} \left\| h\circ g\right\| _{{\widetilde{G}}^s_L({\mathbb {T}}\times I_1)}\lesssim _{s,K,M} \left\| h\right\| _{{\widetilde{G}}^s_K({\mathbb {T}}\times I_2)}. \end{aligned}$$
(A.7)

(iii) Assume \(s\in (0,1)\), \(L\in [1,\infty )\), \(I,J\subseteq {\mathbb {R}}\) are open intervals, and \(g:I\rightarrow J\) is a smooth bijective map satisfying, for any \(m\ge 1\),

$$\begin{aligned} |D^\alpha g(x)|\le L^m(m+1)^{m/s}\qquad \text { for any }x\in I\text { and }|\alpha |\in [1,m]. \end{aligned}$$
(A.8)

If \(|g'(x)|\ge \rho >0\) for any \(x\in I\) then the inverse function \(g^{-1}:J\rightarrow I\) satisfies the bounds

$$\begin{aligned} |D^\alpha (g^{-1})(x)|\le M^m(m+1)^{m/s}\qquad \text { for any }x\in J\text { and }|\alpha |\in [1,m], \end{aligned}$$
(A.9)

for some constant \(M=M(s,L,\rho )\ge L\).

Lemma A.2 can be proved by elementary means using just the definition (A.5). See also Theorem 6.1 and Theorem 3.2 of [20] for more general estimates on functions in Gevrey spaces.

1.1.1 Gevrey Cutoff Functions

Using Lemma A.1, one can construct explicit cutoff functions in Gevrey spaces. For \(a>0\) let

$$\begin{aligned} \psi _a(x):= {\left\{ \begin{array}{ll} e^{-[1/x^a+1/(1-x)^a]}&{}\quad \text { if }x\in [0,1],\\ 0&{}\quad \text { if }x\notin [0,1]. \end{array}\right. } \end{aligned}$$
(A.10)

Clearly \(\psi _a\) are smooth functions on \({\mathbb {R}}\), supported in the interval [0, 1] and independent of the periodic variable. It is easy to verify that \(\psi _a\) satisfies the bounds (A.1) for \(s:=a/(a+1)\). Thus

$$\begin{aligned} |\widetilde{\psi _a}(\xi )|\lesssim e^{-\mu |\xi |^{a/(a+1)}}\qquad \text { for some }\mu =\mu (a)>0. \end{aligned}$$
(A.11)

One can also construct compactly supported Gevrey cutoff functions which are equal to 1 in a given interval. Indeed, for any \(\rho \in [9/10,1)\), the function

$$\begin{aligned} \psi '_{a,\rho }(x):=\frac{\psi _a(x)}{\psi _a(x)+\psi _a(x-\rho )+\psi _a(x+\rho )} \end{aligned}$$
(A.12)

is smooth, non-negative, supported in [0, 1], and equal to 1 in \([1-\rho ,\rho ]\). Moreover, it follows from Lemma A.1 (i) that \(|\widetilde{\psi '_{a,\rho }}(\xi )|\lesssim e^{-\mu |\xi |^{a/(a+1)}}\) for some \(\mu =\mu (a,\rho )>0\).

1.2 Gevrey Bounds on the Localized Green’s Function

We now provide the proof of Lemma 4.2 (which we recall below).

Lemma A.3

Define the localized Green’s function \({\mathcal {G}}_k\) as

$$\begin{aligned} {\mathcal {G}}^{*}_k(v,w):=\Psi (v){\mathcal {G}}_k(v,w)\Psi (w),\qquad \mathrm{for}\,\,v,w\in {\mathbb {R}}. \end{aligned}$$
(A.13)

Then, for some \(\delta _0:=\delta _0(\vartheta _1)>0\), we have the bounds

$$\begin{aligned} \big |\widetilde{{\mathcal {G}}_k^{*}}(\xi ,\eta )\big |\lesssim \frac{e^{-\delta _0\langle \xi +\eta \rangle ^{(s+1)/2}}}{k^2+|\eta |^2},\qquad \mathrm{for}\,\,\xi ,\eta \in {\mathbb {R}}. \end{aligned}$$
(A.14)

Proof

In view of the definitions (3.2), for \(y,z\in [0,1]\),

$$\begin{aligned}&G_k(y,z) =\frac{1}{4|k|\sinh {|k|}}\nonumber \\&\quad \times \left[ e^{|k|}e^{-|k||y-z|}+e^{-|k|}e^{|k||y-z|}-e^{|k|}e^{-|k|(y+z)}-e^{-|k|}e^{|k|(y+z)}\right] .\nonumber \\ \end{aligned}$$
(A.15)

Therefore, by direct computation, we conclude that for any \(\delta >0\) the following bounds hold:

$$\begin{aligned} \left| \partial _y^m\partial _z^lh_k(y,z)\right| \lesssim (\delta /2)^{-m-l}\big [(m+l)!\big ]e^{-(\delta /20)|k|},\qquad \mathrm{for}\,\,k,l\in {\mathbb {Z}}\cap [0,\infty ),\nonumber \\ \end{aligned}$$
(A.16)

where either \(h_k\in \big \{e^{-|k||y-z|}, e^{-2|k|}e^{|k||y-z|}\big \}\) and \(y,z\in [0,1], |y-z|>\delta \); or \(h_k\in \big \{e^{-|k|(y+z)}\), \(e^{-2|k|}e^{|k|(y+z)}\big \}\) and \(y,z\in [\delta ,1-\delta ]\); or \(h_k=|k|G_k\) and \(y,z\in [\delta ,1-\delta ]\), \(|y-z|>\delta \).

Notice that

$$\begin{aligned} b^{-1}(v)-b^{-1}(w)=(v-w)\int _0^1\big (b^{-1}\big )'(w+s(v-w))\,ds. \end{aligned}$$
(A.17)

Denote

$$\begin{aligned} F(v,w):=\int _0^1\big (b^{-1}\big )'(w+s(v-w))\,ds,\qquad F^{*}(v,w):=b^{-1}(v)+b^{-1}(w).\nonumber \\ \end{aligned}$$
(A.18)

Then by (1.6)–(1.7), the physical space characterization of Gevrey spaces (see Lemma A.1 and Lemma A.2) \(g\in \{F,F^{*}\}\) satisfies, for \(v,w\in [{\underline{v}},{\overline{v}}]\),

$$\begin{aligned} \left| \partial _v^m\partial _w^lg(v,w)\right| \lesssim C^{m+l}((m+l)!)^{2/(s+1)},\qquad \mathrm{for}\,\,m,l\in {\mathbb {Z}}\cap [0,\infty ). \end{aligned}$$
(A.19)

In view of the change of variables (3.23) and the definitions (A.18), we can write for \(v,w\in [{\underline{v}},{\overline{v}}]\) that

$$\begin{aligned} \begin{aligned} {\mathcal {G}}_k(v,w)&=\frac{1}{4|k|\sinh {|k|}}\Big [e^{-|k|}e^{|k||b^{-1}(v)-b^{-1}(w)|}+e^{|k|}e^{-|k||b^{-1}(v)-b^{-1}(w)|}\\&\quad -e^{|k|}e^{-|k|(b^{-1}(v)+b^{-1}(w))}-e^{-|k|}e^{|k|(b^{-1}(v)+b^{-1}(w))}\Big ]\\&=\frac{1}{4|k|\sinh {|k|}}\Big [e^{-|k|}e^{|k|F(v,w)|v-w|}+e^{|k|}e^{-|k|F(v,w)|v-w|}\\&\quad -e^{|k|}e^{-|k|F^{*}(v,w)}-e^{-|k|}e^{|k|F^{*}(v,w)}\Big ]. \end{aligned} \end{aligned}$$
(A.20)

Therefore, for any \(v,w\in {\mathbb {R}}\),

$$\begin{aligned} \begin{aligned}&\Psi (v){\mathcal {G}}_k(v,v+w)\Psi (v+w)\\&\quad =\frac{\Psi (v)\Psi (v+w)}{4|k|\sinh {|k|}}\Big [e^{-|k|}e^{|k|F(v,v+w)|w|}+e^{|k|}e^{-|k|F(v,v+w)|w|}\\&\qquad -e^{|k|}e^{-|k|F^{*}(v,v+w)}-e^{-|k|}e^{|k|F^{*}(v,v+w)}\Big ]. \end{aligned} \end{aligned}$$
(A.21)

We claim the following bounds for \(H_1=e^{-|k||w|F(v,v+w)}, H_2=e^{-2|k|+|k||w|F(v,v+w)}, \) and \(H_3\in \big \{-e^{-|k|F^{*}(v,v+w)},-e^{-2|k|}e^{|k|F^{*}(v,v+w)}\big \}\) with \((v,w)\in \mathrm{supp}\,\Psi (v)\Psi (v+w)\):

$$\begin{aligned} \left| \partial _v^lH_a(v,w)\right| \lesssim e^{-\mu |kw|}C^l(l!)^{2/(1+s)},\qquad \mathrm{for}\,\,l\in {\mathbb {Z}}\cap [0,\infty ), a\in \{1,2,3\},\nonumber \\ \end{aligned}$$
(A.22)

where \(\mu >0\) is a sufficiently small number (depending on \(\vartheta _1\)).

The bounds (A.22) for \(H_3\) follow from the bounds (A.16) for the functions \(e^{-|k|(y+z)}\) and \(e^{|k|(y+z-2)}\) where \(y,z\in [\delta ,1-\delta ]\) for a sufficiently small \(\delta >0\), and the property of Gevrey regular functions under compositions, see Lemma A.2.

To prove the bounds (A.22) for \(H_1\) we consider separately the cases \(|kw|<1\) and \(|kw|>1\), and use (A.15)–(A.19). More precisely, if \(|kw|<1\), the bounds (A.22) for \(H_1\) follow direclty from the property of Gevrey regular functions under composition, since \(|kw|F(v,v+w)\) is Gevrey regular in v with uniform bounds in k and w satisfying \(|kw|<1\). For the case of \(|kw|>1\), we first note the function \(a\rightarrow e^{-\kappa a}\) is uniformly Gevrey regular with respect to \(\kappa >1\) in \(a\in [\delta ,\infty )\) for any fixed \(\delta >0\). More precisely, we have for \(\kappa >1\),

$$\begin{aligned} \left| \partial _a^me^{-\kappa a}\right| \lesssim 4^m \delta ^{-m}(m!) e^{-\kappa \delta /2},\qquad \mathrm{for \,\,}m\in {\mathbb {Z}}\cap [1,\infty ). \end{aligned}$$
(A.23)

Now we view \(H_1\) as the composition of \(e^{-\kappa a}\) and \(F(v,v+w)\) with \(\kappa =|kw|\), notice from (A.18) that \(F(v,v+w)\approx _{\vartheta _1} 1\) on the support of \(\Psi (v)\Psi (v+w)\). Then the bounds (A.22) for \(H_1\) follow from (A.23) and the property of Gevrey spaces under compositions, see Lemma A.2.

The bounds (A.22) for \(H_2\) follow from similar arguments as the case of \(H_1\). The case \(|kw|<1\) follows from the same argument so focus on the case \(|kw|>1\). We view \(H_2\) as the composition of the function \(a\rightarrow e^{-|k|a}\) and \(2-F(v,v+w)|w|\) and notice that \(F(v,v+w)|w|<2-\delta \) on the support of \(\Psi (v)\Psi (v+w)\) for a small \(\delta \) depending on \(\vartheta _1\), see (A.17)–(A.18). The bounds (A.22) for \(H_2\) then follow from analogous arguments as in the case of \(H_1\). This completes the proof of (A.22).

To finish the proof of Lemma A.3, we make the observation that for \(\xi ,\eta \in {\mathbb {R}}\),

$$\begin{aligned} \begin{aligned}&\int _{{\mathbb {R}}^2}\Psi (v){\mathcal {G}}_k(v,w)\Psi (w)e^{-i v\xi -iw\eta }\mathrm{{d}}v \mathrm{{d}}w \\&\quad =\int _{{\mathbb {R}}^2}\Psi (v){\mathcal {G}}_k(v,v+w)\Psi (v+w)e^{-iv(\xi +\eta )-iw\eta }\,\mathrm{{d}}v\mathrm{{d}}w. \end{aligned} \end{aligned}$$
(A.24)

The claimed bounds (A.14) follow from integration by parts in (A.24) in the variable w (twice) and then apply Lemma A.1 in the variable v, using (A.21)–(A.22). \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, H. Linear Inviscid Damping in Gevrey Spaces. Arch Rational Mech Anal 235, 1327–1355 (2020). https://doi.org/10.1007/s00205-019-01445-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-019-01445-x

Navigation