Skip to main content
Log in

Time-Domain Analysis of an Acoustic–Elastic Interaction Problem

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Consider the scattering of a time-domain acoustic plane wave by a bounded elastic obstacle which is immersed in a homogeneous air or fluid. This paper concerns the mathematical analysis of such a time-domain acoustic–elastic interaction problem. An exact transparent boundary condition (TBC) is developed to reduce the scattering problem from an open domain into an initial-boundary value problem in a bounded domain. The well-posedness and stability are established for the reduced problem. A priori estimates with explicit time dependence are achieved for the pressure of the acoustic wave field and the displacement of the elastic wave field. Our proof is based on the method of energy, the Lax–Milgram lemma, and the inversion theorem of the Laplace transform. In addition, a time-domain absorbing perfectly matched layer (PML) method is introduced to replace the nonlocal TBC by a Dirichlet boundary condition. A first order symmetric hyperbolic system is derived for the truncated PML problem. The well-posedness and stability are proved. The time-domain PML results are expected to be useful in the computational air/fluid–solid interaction problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Appelö, D.; Kreiss, G.: A new absorbing layer for elastic waves. J. Comput. Phys. 215(2), 642–660 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Berenger, J.-P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bramble, J.H.; Pasciak, J.E.: Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems. Math. Comp. 76, 597–614 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Chen, Q.; Monk, P.: Discretization of the time domain CFIE for acoustic scattering problems using convolution quadrature. SIAM J. Math. Anal. 46(5), 3107–3130 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, S.: Introduction to Modern Partial Differential Equations. Science Press, Beijing (2005)

    Google Scholar 

  6. Chen, Z.: Convergence of the time-domain perfectly matched layer method for acoustic scattering problems. Int. J. Numer. Anal. Model. 6(1), 124–146 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Chen, Z.; Nédélec, J.-C.: On Maxwell's equations with the transparent boundary condition. J. Comput. Math. 26(3), 284–296 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Chen, Z.; Wu, X.: Long-time stability and convergence of the uniaxial perfectly matched layer method for time-domain acoustic scattering problems. SIAM J. Numer. Anal. 50(5), 2632–2655 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Z.; Zheng, W.: Convergence of the uniaxial perfectly matched layer method for time-harmonic scattering problems in two-layered media. SIAM J. Numer. Anal. 48(6), 2158–2185 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chew, W.; Liu, Q.: Perfectly matched layers for elastodynamics: a new absorbing boundary condition. J. Comput. Acoust. 4(4), 341–359 (1996)

    Article  Google Scholar 

  11. Chew, W.; Weedon, W.: A 3D perfectly matched medium for modified Maxwells equations with stretched coordinates. Microw. Opt. Technol. Lett. 13, 599–604 (1994)

    Article  ADS  Google Scholar 

  12. Cohen, A.M.: Numerical Methods for Laplace Transform Inversion, vol. 5. Numerical Methods and Algorithms. Springer, New York (2007)

    MATH  Google Scholar 

  13. Collino, F.; Monk, P.: The perfectly matched layer in curvilinear coordinates. SIAM J. Sci. Comput. 19, 1061–1090 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, vol. 93, Applied Mathematical Sciences, 3rd edn. Springer, New York, 2013

  15. Courjon, D.: Near-Field Microscopy and Near-Field Optics, vol. 317. World Scientific, Singapore (2003)

    Book  Google Scholar 

  16. Dallas, A.G.: Analysis of a Limiting-Amplitude Problem in Acousto-Elastic Interactions. Technical report, DTIC Document (1989)

    Google Scholar 

  17. De Hoop, A.T.; Van den Berg, P.M.; Remis, R.F.: Absorbing boundary conditions and perfectly matched layers-analytic time-domain performance analysis. IEEE Trans. Magn. 38(2), 657–660 (2002)

    Article  ADS  Google Scholar 

  18. Diaz, J.; Joly, P.: A time domain analysis of PML models in acoustics. Comput. Methods Appl. Mech. Eng. 195(29), 3820–3853 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Donea, J.; Giuliani, S.; Halleux, J.-P.: An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput. Methods Appl. Mech. Eng. 33(1–3), 689–723 (1982)

    Article  ADS  MATH  Google Scholar 

  20. Estorff, O.V.; Antes, H.: On FEM-BEM coupling for fluid-structure interaction analyses in the time domain. Int. J. Numer. Methods Eng. 31(6), 1151–1168 (1991)

    Article  MATH  Google Scholar 

  21. Evans, L.C.: Partial Differential Equations, vol. 19, Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence, 2010

  22. Fahy, F.J.; Gardonio, P.: Sound and Structural Vibration: Radiation. Transmission and Response. Academic Press, London (2007)

    Google Scholar 

  23. Fatemi, M., Greenleaf, J.F.: Ultrasound-Stimulated Vibro-Acoustic Spectrography. Science, 280(5360), 82–85, 1998

  24. Flemisch, B.; Kaltenbacher, M.; Wohlmuth, B.I.: Elasto-acoustic and acoustic-acoustic coupling on non-matching grids. Int. J. Numer. Methods Eng. 67(13), 1791–1810 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gao, Y.; Li, P.: Analysis of time-domain scattering by periodic structures. J. Differ. Equ. 261(9), 5094–5118 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Gustafsson, B.; Kreiss, H.O.; Oliger, J.: Time Dependent Problems and Difference Methods. Wiley, New York (1995)

    MATH  Google Scholar 

  27. Hagstrom, T.: Radiation boundary conditions for the numerical simulation of waves. Acta Numer. 8, 47–106 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Hamdi, M., Jean, P.: A Mixed Functional for the Numerical Resolution of Fluid-Structure Interaction Problems, Aero-and Hydro-Acoustics, pp. 269–276. Springer, Berlin, 1986

  29. Hsiao, G.C.: On the Boundary-Field Equation Methods for Fluid-Structure Interactions, Problems and Methods in Mathematical Physics, vol. 134, Teubner-Texte Mathematics, pp. 79–88. Teubner, Stuttgart, 1994

  30. Hsiao, G.C., Kleinman, R.E., Schuetz, L.S.: On Variational Formulations of Boundary Value Problems for Fluid–Solid Interactions, Elastic Wave Propagation, vol. 35, North-Holland Series Applied Mathematics and Mechanics, pp. 321–326. North-Holland, Amsterdam, 1989

  31. Hu, G.; Kirsch, A.; Yin, T.: Factorization method in inverse interaction problems with bi-periodic interfaces between acoustic and elastic waves. Inverse Probl. Imaging 10(1), 103–129 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jin, J.-M.; Riley, D.J.: Finite Element Analysis of Antennas and Arrays. Wiley, New York (2009)

    Google Scholar 

  33. Kucukcoban, S.; Kallivokas, L.: Mixed perfectly-matched-layers for direct transient analysis in 2D elastic heterogeneous media. Comput. Methods Appl. Mech. Eng. 200(1), 57–76 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Li, J.; Huang, Y.: Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials, vol. 43. Springer Series in Computational Mathematics. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  35. Li, P.; Wang, L.-L.; Wood, A.: Analysis of transient electromagnetic scattering from a three-dimensional open cavity. SIAM J. Appl. Math. 75(4), 1675–1699 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Luke, C.J.; Martin, P.A.: Fluid-solid interaction: acoustic scattering by a smooth elastic obstacle. SIAM J. Appl. Math. 55(4), 904–922 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Morand, H.J.-P.; Ohayon, R.: Fluid Structure Interaction. Wiley, New York (1995)

    MATH  Google Scholar 

  38. Nédélec, J.-C.: Acoustic and Electromagnetic Equations Integral Representations for Harmonic Problems, vol. 144. Applied Mathematical Sciences. Springer, New York (2001)

    Book  MATH  Google Scholar 

  39. Ohayon, R.; Soize, C.: Structural Acoustics and Vibration: Mechanical Models. Variational Formulations and Discretization. Elsevier, Amsterdam (1997)

    Google Scholar 

  40. Qi, Q.; Geers, T.L.: Evaluation of the perfectly matched layer for computational acoustics. J. Comput. Phys. 139(1), 166–183 (1998)

    Article  ADS  MATH  Google Scholar 

  41. Riley, D.J.; Jin, J.-M.: Finite-element time-domain analysis of electrically and magnetically dispersive periodic structures. IEEE Trans. Antennas Propag. 56(11), 3501–3509 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Shirron, J.J.; Giddings, T.E.: A finite element model for acoustic scattering from objects near a fluid-fluid interface. Comput. Methods Appl. Mech. Eng. 196(1), 279–288 (2006)

    Article  ADS  MATH  Google Scholar 

  43. Soares, D.; Mansur, W.: Dynamic analysis of fluid-soil-structure interaction problems by the boundary element method. J. Comput. Phys. 219(2), 498–512 (2006)

    Article  ADS  MATH  Google Scholar 

  44. Trèves, F.: Basic Linear Partial Differential Equations, vol. 62. Pure and Applied Mathematics. Academic Press, New York (1975)

    MATH  Google Scholar 

  45. Turkel, E.; Yefet, A.: Absorbing PML boundary layers for wave-like equations. Appl. Numer. Math. 27, 533–557 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  46. Uhlmann, G.: Inside Out: Inverse Problems and Applications, vol. 47. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  47. Wang, B.; Wang, L.: On \(L^2\)-stability analysis of time-domain acoustic scattering problems with exact nonreflecting boundary conditions. J. Math. Study 1(1), 65–84 (2014)

    MATH  Google Scholar 

  48. Wang, L.; Wang, B.; Zhao, X.: Fast and accurate computation of time-domain acoustic scattering problems with exact nonreflecting boundary conditions. SIAM J. Appl. Math. 72(6), 1869–1898 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yin, T.; Hu, G.; Xu, L.; Zhang, B.: Near-field imaging of obstacles with the factorization method: fluid-solid interaction. Inverse Probl. 32(1), 01500329 (2016)

    Article  MathSciNet  Google Scholar 

  50. Zhang, W.; Shen, Y.: Unsplit complex frequency-shifted pml implementation using auxiliary differential equations for seismic wave modeling. Geophysics 75(4), T141–T154 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peijun Li.

Additional information

Communicated by F. Lin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, G., Gao, Y. & Li, P. Time-Domain Analysis of an Acoustic–Elastic Interaction Problem. Arch Rational Mech Anal 229, 835–884 (2018). https://doi.org/10.1007/s00205-018-1228-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-1228-2

Navigation