Skip to main content
Log in

Analysis of Diffusion Generated Motion for Mean Curvature Flow in Codimension Two: A Gradient-Flow Approach

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The Merriman–Bence–Osher (MBO) scheme, also known as diffusion generated motion or thresholding, is an efficient numerical algorithm for computing mean curvature flow (MCF). It is fairly well understood in the case of hypersurfaces. This paper establishes the first convergence proof of the scheme in codimension two. We concentrate on the case of the curvature motion of a filament (curve) in \({{\mathbb{R}}^3}\). Our proof is based on a new generalization of the minimizing movements interpretation for hypersurfaces (Esedoglu–Otto ’15) by means of an energy that approximates the Dirichlet energy of the state function. As long as a smooth MCF exists, we establish uniform energy estimates for the approximations away from the smooth solution and prove convergence towards this MCF. The current result that holds in codimension two relies in a very crucial manner on a new sharp monotonicity formula for the thresholding energy. This is an improvement of an earlier approximate version.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27(6), 1085–1095 (1979)

    Article  Google Scholar 

  2. Almgren, F., Taylor, J.E., Wang, L.: Curvature-driven flows: a variational approach. SIAM J. Control Optim. 31(2), 387–438 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Altschuler, S.J., Grayson, M.A.: Shortening space curves and flow through singularities. J. Differ. Geom. 35(2), 283–298 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in Metric Spaces and in the Space of Probability Measures. Birkhäuser, 2008

  5. Ambrosio, L., Soner, H.M.: Level set approach to mean curvature flow in arbitrary codimension. J. Differ. Geom. 43, 693–737 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambrosio, L., Soner, H.M.: A measure-theoretic approach to higher codimension mean curvature flows. Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV. 25(1–2), 27–49 (1997)

  7. Barles, G., Georgelin, C.: A simple proof of convergence for an approximation scheme for computing motions by mean curvature. SIAM J. Numer. Anal. 32(2), 484–500 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bethuel, F., Brezis, H., Hélein, F.: Ginzburg-Landau vortices. Progress in Nonlinear Differential Equations and their Applications, vol. 13. Birkhäuser Boston Inc, Boston, MA (1994)

  9. Bethuel, F., Orlandi, G., Smets, D.: Convergence of the parabolic Ginzburg-Landau equation to motion by mean curvature. Ann. Math. 163(1), 37–163 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bonnetier, E., Bretin, E., Chambolle, A.: Consistency result for a non monotone scheme for anisotropic mean curvature flow. Interfaces Free Bound. 14(1), 1–35 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brakke, K.A.: The motion of a surface by Its Mean Curvature, vol. 20. Princeton University Press, Princeton (1978)

    MATH  Google Scholar 

  12. Bronsard, L., Kohn, R.V.: Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics. J. Differ. Equ. 90(2), 211–237 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Chen, X.: Generation and propagation of interfaces for reaction-diffusion equations. J. Differ. Equ. 96, 116–141 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Chen, Y.G., Giga, Y., Goto, S.: Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differ. Geom. 33(3), 749–786 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, Y.: The weak solutions to the evolution problems of harmonic maps. Math. Z. 201(1), 69–74 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. De Giorgi, E.: New problems on minimizing movements. Bound. Value Probl. PDE Appl. 29, 91–98 (1993)

    MathSciNet  MATH  Google Scholar 

  17. De Giorgi, E.: Barriers, boundaries, motion of manifolds. Conference proceedings of Department of Mathematics of Pavia, Vol. 18, 1994

  18. De Mottoni, P., Schatzman, M.: Geometrical evolution of developed interfaces. Trans. Am. Math. Soc. 347(5), 1533–1589 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Elsey, M., Esedoğlu, S.: Threshold dynamics for anisotropic surface energies. Technical report, UM (2016)

    MATH  Google Scholar 

  20. Esedoğlu, S., Otto, F.: Threshold dynamics for networks with arbitrary surface tensions. Commun. Pure Appl. Math. 68(5), 808–864 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Evans, L.C.: Weak Convergence Methods for Nonlinear Partial Differential Equations. Number 74. American Mathematical Soc., 1990

  22. Evans, L.C.: Convergence of an algorithm for mean curvature motion. Indiana Univ. Math. J. 42(2), 533–557 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Evans, L.C., Soner, H.M., Souganidis, P.E.: Phase transitions and generalized motion by mean curvature. Commun. Pure Appl. Math. 45(9), 1097–1123 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Evans, L.C., Spruck, J.: Motion of level sets by mean curvature I. J. Differ. Geom. 33(3), 635–681 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gage, M., Hamilton, R.S.: The heat equation shrinking convex plane curves. J. Differ. Geom. 23(1), 69–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huisken, G., Polden, A.: Geometric evolution equations for hypersurfaces. In: Calculus of variations and geometric evolution problems (Cetraro, 1996), volume 1713 of Lecture Notes in Math., pp. 45–84. Springer, Berlin, 1999

  27. Ilmanen, T.: Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature. J. Differ. Geom. 38(2), 417–461 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ishii, H.: A generalization of the Bence, Merriman and Osher algorithm for motion by mean curvature. In: Curvature flows and related topics (Levico, 1994), volume 5 of GAKUTO Internat. Ser. Math. Sci. Appl., pp. 111–127. Gakkōtosho, Tokyo, 1995

  29. Ishii, H., Pires, G.E., Souganidis, P.E.: Threshold dynamics type approximation schemes for propagating fronts. J. Math. Soc. Jpn. 51(2), 267–308 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jerrard, R.L.: Quantized vortex filaments in complex scalar fields. In: Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. III, pp. 789–810. Kyung Moon Sa, Seoul, 2014

  31. Jerrard, R.L., Soner, H.M.: Scaling limits and regularity results for a class of Ginzburg-Landau systems. Ann. Inst. H. Poincaré Anal. Non Linéaire. 16(4), 423–466 (1999)

  32. Laux, T., Otto, F.: Convergence of the thresholding scheme for multi-phase mean-curvature flow. Calc. Var. Partial Differ. Equ. 55(5), 1–74 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Laux, T., Otto, F.: Brakke's inequality for the thresholding scheme (2017). arXiv prerpint arXiv:1708.03071

  34. Laux, T., Simon, T.: Convergence of the Allen–Cahn equation to multiphase mean curvature flow. To appear in Commun. Pure Appl. Math. (2018). https://doi.org/10.1002/cpa.21747

  35. Laux, T., Swartz, D.: Convergence of thresholding schemes incorporating bulk effects. Interfaces Free Bound. 55(2), 273–304 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lin, F.: Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension-2 submanifolds. Commun. Pure Appl. Math. 51(4), 385–441 (1998)

    Article  MathSciNet  Google Scholar 

  37. Lin, F., Pan, X.-B., Wang, C.: Phase transition for potentials of high-dimensional wells. Commun. Pure Appl. Math. 65(6), 833–888 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Luckhaus, S., Sturzenhecker, T.: Implicit time discretization for the mean curvature flow equation. Calc. Var. Partial Differ. Equ. 3(2), 253–271 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  39. Merriman, B., Bence, J.K., Osher, S.J.: Diffusion generated motion by mean curvature. CAM Report, pp. 92–18. Department of Mathematics, University of California, Los Angeles, 1992

  40. Merriman, B., Bence, J.K., Osher, S.J.: Motion of multiple junctions: a level set approach. J. Comput. Phys. 112(2), 334–363 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Osting, B., Wang, D.: A generalized MBO diffusion generated motion for orthogonal matrix-valued fields (2017). arXiv preprint prerpint arXiv:1711.01365

  42. Pismen, L.M., Rubinstein, J.: Motion of vortex lines in the Ginzburg-Landau model. Phys. D. Nonlinear Phenom. 47(3), 353–360 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Rubinstein, J.: Self-induced motion of line defects. Q. Appl. Math. 49(1), 1–9 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  44. Rubinstein, J., Sternberg, P., Keller, J.B.: Fast reaction, slow diffusion, and curve shortening. SIAM J. Appl. Math. 49(1), 116–133 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  45. Rubinstein, J., Sternberg, P., Keller, J.B.: Reaction-diffusion processes and evolution to harmonic maps. SIAM J. ApplMath. 49(6), 1722–1733 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ruuth, S.J., Merriman, B., Xin, J., Osher, S.: Diffusion-generated motion by mean curvature for filaments. J. Nonlinear ci. 11(6), 473–493 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Sandier, E., Serfaty, S.: Vortices in the magnetic Ginzburg-Landau model. Progress in Nonlinear Differential Equations and their Applications, vol. 70. Birkhäuser Boston Inc, Boston, MA (2007)

  48. Soner, H.M.: Front propagation. Boundaries, interfaces, and transitions (Banff, AB, 1995), volume 13 of CRM Proc. Lecture Notes, pp. 185–206. Amer. Math. Soc, Providence, RI (1998)

  49. Swartz, D., Yip, N.K.: Convergence of diffusion generated motion to motion by mean curvature. Commun. Partial Differ. Equ. 42(10), 1598–1643 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang, M.-T.: Long-time existence and convergence of graphic mean curvature flow in arbitrary codimension. Invent. Math. 148(3), 525–543 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Wang, M.-T.: Mean curvature flows in higher codimension. In: Second International Congress of Chinese Mathematicians, volume  4 of New Stud. Adv. Math., pp. 275–283. Int. Press, Somerville, MA, 2004

  52. Wang, M.-T.: Lectures on mean curvature flows in higher codimensions. In: Handbook of Geometric Analysis. No. 1, Volume 7 of Adv. Lect. Math. (ALM), pp. 525–543. Int. Press, Somerville, MA, 2008

Download references

Acknowledgements

The authors thank Selim Esedoglu, Felix Otto, and Drew Swartz for useful discussion. The support by the Purdue Research Foundation and the hospitality of the Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany, are highly noted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Laux.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by A. Garroni

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laux, T., Yip, N.K. Analysis of Diffusion Generated Motion for Mean Curvature Flow in Codimension Two: A Gradient-Flow Approach. Arch Rational Mech Anal 232, 1113–1163 (2019). https://doi.org/10.1007/s00205-018-01340-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-01340-x

Navigation