Skip to main content
Log in

A Partial Differential Equation for the Rank One Convex Envelope

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

A partial differential equation (PDE) for the rank one convex envelope is introduced. The existence and uniqueness of viscosity solutions to the PDE is established. Elliptic finite difference schemes are constructed and convergence of finite difference solutions to the viscosity solution of the PDE is proven. Computational results are presented and laminates are computed from the envelopes. Results include the Kohn–Strang example, the classical four gradient example, and an example with eight gradients which produces nontrivial laminates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alvarez O., Lasry J.-M., Lions P.-L.: Convex viscosity solutions and state constraints. J. Math. Pures Appl. 76(3), 265–288 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abbasi, B., Oberman, A.M.: A partial differential equation for the strictly quasiconvex envelope. arXiv:1612.06813, 2016

  3. Aranda E., Pedregal P.: Numerical approximation of non-homogeneous, non-convex vector variational problems. Numer. Math. 89(3), 425–444 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aranda E., Pedregal P.: On the computation of the rank-one convex hull of a function. SIAM J. Sci. Comput. 22(5), 1772–1790 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63(4), 337–403, 1976/1977

  6. Bartels S.: Linear convergence in the approximation of rank-one convex envelopes. ESAIM: Math. Model. Numer. Anal. 38(05), 811–820 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bartels S.: Reliable and efficient approximation of polyconvex envelopes. SIAM J. Numer. Anal. 43(1), 363–385 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ball, J., James, R.: Fine phase mixtures as minimizers of energy. In: Analysis and Continuum Mechanics, pp. 647–686. Springer, Berlin, 1989

  9. Ball J.M., Kirchheim B., Kristensen J.: Regularity of quasiconvex envelopes. Calc. Var. Partial Differ. Equ. 11(4), 333–359 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bardi M., Mannucci P.: On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations. Commun. Pure Appl. Anal. 5(4), 709–731 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bardi, M., Mannucci, P.: Comparison principles and Dirichlet problem for fully nonlinear degenerate equations of Monge–Ampère type. In: Forum Mathematicum, vol. 25, pp. 1291–1330, 2013

  12. Barles G., Souganidis P.E.: Convergence of approximation schemes for fully nonlinear second order equations. Asymptot. Anal. 4(3), 271–283 (1991)

    MathSciNet  MATH  Google Scholar 

  13. Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1–67, 1992

  14. Chipot M., Kinderlehrer D.: Equilibrium configurations of crystals. Arch. Ration. Mech. Anal. 103(3), 237–277 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Caffarelli L.A., Nirenberg L., Spruck J.: The dirichlet problem for the degenerate monge-ampère equation. Rev. Mat. Iberoam. 2(1–2), 19–27 (1986)

    Article  MATH  Google Scholar 

  16. Dacorogna, B.: Direct Methods in the Calculus of Variations. Applied Mathematical Sciences, 2nd edn, vol. 78. Springer, Berlin, 2008

  17. Dolzmann, G.: Numerical computation of rank-one convex envelopes. SIAM J. Numer. Anal. 36(5), 1621–1635, 1999 (electronic)

  18. Dolzmann, G.: Variational Methods for Crystalline Microstructure-Analysis and Computation. Number 1803. Springer, 2003

  19. De Philippis, G., Figalli, A.: Optimal regularity of the convex envelope. Trans. Am. Math. Soc. 367(6), 4407–4422, 2015

  20. Dolzmann G., Walkington N.J.: Estimates for numerical approximations of rank one convex envelopes. Numer. Math. 85(4), 647–663 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Franěk V., Matoušek J.: Computing d-convex hulls in the plane. Comput. Geom. 42(1), 81–89 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Froese B.D., Oberman A.M.: Convergent filtered schemes for the Monge–Ampère partial differential equation. SIAM J. Numer. Anal. 51(1), 423–444 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Froese, B.D.: Convergent approximation of surfaces of prescribed Gaussian curvature with weak Dirichlet conditions. arXiv:1601.06315, 2016

  24. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2nd edn, vol. 224. Springer, Berlin, 1983

  25. Kohn R.V., Strang G.: Optimal design and relaxation of variational problems, i. Commun. Pure Appl. Math. 39(1), 113–137 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kohn R.V., Strang G.: Optimal design and relaxation of variational problems, ii. Commun. Pure Appl. Math. 39(2), 139–182 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  27. Morrey C.B.: Quasi-convexity and the lower semicontinuity of multiple integrals. Pac. J. Math. 2(1), 25–53 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  28. Matoušek J., Plecháč P.: On functional separately convex hulls. Discrete Comput. Geom. 19(1), 105–130 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Muller, S.: Variational models for microstructure and phase transitions. In: Calculus of Variations and Geometric Evolution Problems (Italy, 1996), pp. 85–210. Springer, Berlin, 1999

  30. Motzkin T.S., Wasow W.: On the approximation of linear elliptic differential equations by difference equations with positive coefficients. J. Math. Phys. 31, 253–259 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  31. Oberman, A.M.: Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton–Jacobi equations and free boundary problems. SIAM J. Numer. Anal. 44(2), 879–895, 2006 (electronic)

  32. Oberman, A.M.: The convex envelope is the solution of a nonlinear obstacle problem. Proc. Am. Math. Soc. 135(6), 1689–1694, 2007 (electronic)

  33. Oberman A.M.: Computing the convex envelope using a nonlinear partial differential equation. Math. Models Methods Appl. Sci. 18(5), 759–780 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Oberman A.M.: Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete Contin. Dyn. Syst. Ser. B, 10(1), 221–238 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Oberman A., Silvestre L.: The Dirichlet problem for the convex envelope. Trans. Am. Math. Soc. 363(11), 5871–5886 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pedregal, P.: Parametrized Measures and Variational Principles, vol. 30. Springer, 1997

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam M. Oberman.

Additional information

Communicated by I. Fonseca

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oberman, A.M., Ruan, Y. A Partial Differential Equation for the Rank One Convex Envelope. Arch Rational Mech Anal 224, 955–984 (2017). https://doi.org/10.1007/s00205-017-1092-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1092-5

Navigation