Skip to main content
Log in

Stochastic Allen–Cahn Approximation of the Mean Curvature Flow: Large Deviations Upper Bound

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Consider the Allen–Cahn equation on the d-dimensional torus, d =  2, 3, in the sharp interface limit. As is well known, the limiting dynamics is described by the motion by mean curvature of the interface between the two stable phases. Here, we analyze a stochastic perturbation of the Allen–Cahn equation and describe its large deviation asymptotics in a joint sharp interface and small noise limit. Relying on previous results on the variational convergence of the action functional, we prove the large deviations upper bound. The corresponding rate function is finite only when there exists a time evolving interface of codimension one between the two stable phases. The zero level set of this rate function is given by the evolution by mean curvature in the sense of Brakke. Finally, the rate function can be written in terms of the sum of two non-negative quantities: the first measures how much the velocity of the interface deviates from its mean curvature, while the second is due to the possible occurrence of nucleation events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adler, R.J.: An Introduction to Continuity, Extrema and Related Topics for General Gaussian Processes. Lecture Notes Monograph Series 12. Institute of Mathematical Statistics, 1990

  2. Alberti, G.: Variational models for phase transitions, an approach via \({\Gamma}\)-convergence. In: Buttazzo, G., Marino, A., Murthy, M.K.V. (eds.) Calculus of Variations and Partial Differential Equations (Pisa, 1996), pp. 95–114. Springer, Berlin, 2000

  3. Albeverio S., Röckner M.: Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms. Probab. Theory Relat. Fields 89, 347–386 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Allen S., Cahn J.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1084–1095 (1979)

    Article  Google Scholar 

  5. Bertini, L., Buttà, P., Pisante, A.: Stochastic Allen–Cahn equation with mobility. arXiv:1512.08736

  6. Barles G., Soner H.M., Souganidis P.E.: Front propagation and phase field theory. SIAM J. Control Optim. 31, 439–469 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Billingsley, P.: Convergence of Probability Measures. Wiley, New York, 1968

  8. Bogachev, V.I.: Measure Theory, Vol. II. Springer, Berlin, 2007

  9. Brakke, K.A.: The Motion of a Surface by Its Mean Curvature. Mathematical Notes 20. Princeton University Press, Princeton, 1978

  10. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York, 2011

  11. Cerrai S., Freidlin M.: Approximation of quasi-potentials and exit problems for multidimensional RDE’s with noise. Trans. Am. Math. Soc. 363, 3853–3892 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cahn J.W., Hilliard J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  ADS  Google Scholar 

  13. Dal Maso, G.: An Introduction to Gamma Convergence. Birkhäuser, Boston, 1993

  14. Da Prato G., Debussche A.: Strong solutions to the stochastic quantization equations. Ann. Probab. 31, 1900–1916 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dembo, A., Zeitouni, O.: Large deviations techniques and applications, Second edition. Springer, New York, 1998

  16. Evans L.C., Soner H.M., Souganidis P.E.: Phase transitions and generalized motion by mean curvature. Commun. Pure Appl. Math. 45, 1097–1123 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Evans L.C., Spruck J.: Motion of level sets by mean curvature. IV. J. Geom. Anal. 5, 77–114 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Faris W.G., Jona-Lasinio G.: Large fluctuations for a nonlinear heat equation with noise. J. Phys. A 15, 3025–3055 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Flandoli, F.: Regularity Theory and Stochastic Flows for Parabolic SPDEs. Stochastics Monographs, 9. Gordon and Breach Science Publishers, Yverdon, 1995

  20. Flandoli F., Gubinelli M., Giaquinta M., Tortorelli V.M.: Stochastic currents. Stochastic Process. Appl. 115, 1583–1601 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems. Springer, New York, 1998

  22. Hairer M.: A theory of regularity structures. Invent. Math. 198, 269–504 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Hairer M., Weber H.: Large deviations for white-noise driven, nonlinear stochastic PDEs in two and three dimensions. Ann. Fac. Sci. Toulouse Math. (6) 24, 55–92 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Heida, M., Röger, M.: Large deviation principle for a stochastic Allen–Cahn equation. J. Theor. Probab. 2016. doi:10.1007/s10959-016-0711-7

  25. Hutchinson J.E.: Second fundamental form for varifolds and the existence of surfaces minimising curvature. Indiana Univ. Math. J. 35, 45–71 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hutchinson J.E., Tonegawa Y.: Convergence of phase interfaces in the van der Waals–Cahn–Hilliard theory. Calc. Var. Partial Differ. Equ. 10, 49–84 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jona-Lasinio G., Mitter P.K.: On the stochastic quantization of field theory. Commun. Math. Phys. 101, 409–436 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Jona-Lasinio G., Mitter P.K.: Large deviations estimates in the stochastic quantization of \({\varphi^{4}_{2}}\). Commun. Math. Phys. 130, 111–121 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer, Berlin, 1999

  30. Kohn R., Otto F., Reznikoff M.G., Vanden-Eijnden E.: Action minimization and sharp-interface limits for the stochastic Allen–Cahn equation. Commun. Pure Appl. Math. 60, 393–438 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kohn R.V., Reznikoff M.G., Tonegawa Y.: Sharp-interface limit of the Allen–Cahn action functional in one space dimension. Calc. Var. Partial Differ. Equ. 25, 503–534 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ilmanen T.: Convergence of the Allen–Cahn equation to the Brakkes motion by mean curvature. J. Differ. Geom. 31, 417–461 (1993)

    MathSciNet  MATH  Google Scholar 

  33. Ilmanen T.: Elliptic regularization and partial regularity for motion by mean curvature. Mem. Am. Math. Soc. 108, 0520 (1994)

    MathSciNet  MATH  Google Scholar 

  34. Ilmanen, T.: Lectures on mean curvature flow and related equations. Lecture Notes, ICTP, Trieste, 1995. http://www.math.ethz.ch/?ilmanen/papers/pub.html

  35. Magni A., Röger M.: Variational analysis of a mean curvature flow action functional. Calc. Var. Partial Differ. Equ. 52, 609–639 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mariani M.: Large deviations principles for stochastic scalar conservation laws. Probab. Theory Relat. Fields. 147, 607–648 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Modica L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98, 123–142 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mourrat, J.-C., Weber, H.: Global well-posedness of the dynamic \({\Phi^{4}}\) model in the plane. Ann. Probab. (to appear). arXiv:1501.06191

  39. Mourrat, J.-C., Weber, H.: Global well-posedness of the dynamic \({\Phi^{4}_{3}}\) model on the torus. arXiv:1601.01234

  40. Mugnai L., Röger M.: The Allen–Cahn action functional in higher dimensions. Interfaces Free Bound. 10, 45–78 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Third edition. Springer, Berlin, 1999

  42. Röger M., Schätzle R.: On a modified conjecture of De Giorgi. Math. Z. 254, 675–714 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Simon, L.: Lectures on geometric measure theory. Proceedings of the Centre for Mathematical Analysis, Australian National University 3, 1983

  44. Ionescu Tulcea, A., Ionescu Tulcea, C.: Topics in the Theory of Lifting. Springer, New York, 1969

  45. van der Waals, J.D.: The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. 1894; English translation in J. Stat. Phys. 20, 200–244, 1979

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Buttà.

Additional information

Communicated by A. Braides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertini, L., Buttà, P. & Pisante, A. Stochastic Allen–Cahn Approximation of the Mean Curvature Flow: Large Deviations Upper Bound. Arch Rational Mech Anal 224, 659–707 (2017). https://doi.org/10.1007/s00205-017-1086-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1086-3

Navigation