Skip to main content
Log in

Homogenization of the Brush Problem with a Source Term in L 1

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider a domain which has the form of a brush in 3D or the form of a comb in 2D, i.e. an open set which is composed of cylindrical vertical teeth distributed over a fixed basis. All the teeth have a similar fixed height; their cross sections can vary from one tooth to another and are not supposed to be smooth; moreover the teeth can be adjacent, i.e. they can share parts of their boundaries. The diameter of every tooth is supposed to be less than or equal to \({\varepsilon}\), and the asymptotic volume fraction of the teeth (as \({\varepsilon}\) tends to zero) is supposed to be bounded from below away from zero, but no periodicity is assumed on the distribution of the teeth. In this domain we study the asymptotic behavior (as \({\varepsilon}\) tends to zero) of the solution of a second order elliptic equation with a zeroth order term which is bounded from below away from zero, when the homogeneous Neumann boundary condition is satisfied on the whole of the boundary. First, we revisit the problem where the source term belongs to L 2. This is a classical problem, but our homogenization result takes place in a geometry which is more general that the ones which have been considered before. Moreover we prove a corrector result which is new. Then, we study the case where the source term belongs to L 1. Working in the framework of renormalized solutions and introducing a definition of renormalized solutions for degenerate elliptic equations where only the vertical derivative is involved (such a definition is new), we identify the limit problem and prove a corrector result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Achdou Y., Pironneau O., Valentin F.: Effective boundary conditions for laminar flows over periodic rough boundaries. J. Comput. Phys. 147, 187–218 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Allaire G., Amar M.: Boundary layer tails in periodic homogenization. ESAIM Control Optim. Calc. Var. 4, 209–243 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amirat Y., Bodart O., De Maio U., Gaudiello A.: Effective boundary condition for Stokes flow over a very rough surface. J. Differ. Equ. 254, 3395–3430 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Amirat Y., Climent B., Fernández-Cara E., Simon J.: The Stokes equations with Fourier boundary conditions on a wall with asperities. Math. Methods Appl. Sci. 24, 255–276 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Ansini N., Braides A.: Homogenization of oscillating boundaries and applications to thin films. J. Anal. Math. 83, 151–182 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arrieta J.M., Pereira M.C.: Homogenization in a thin domain with an oscillatory boundary. J. Math. Pures Appl. (9) 96, 29–57 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Arrieta J.M., Villanueva-Pesqueira M.: Thin domains with doubly oscillatory boundary. Math. Methods Appl. Sci. 37, 158–166 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Baffico L., Conca C.: Homogenization of a transmission problem in solid mechanics. J. Math. Anal. Appl. 233, 659–680 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Baía M., Zappale E.: A note on the 3D–2D dimensional reduction of a micromagnetic thin film with nonhomogeneous profile. Appl. Anal. 86, 555–575 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bénilan P., Boccardo L., Gallouët T., Gariepy R., Pierre M., Vázquez J.L.: An L 1-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 22, 241–273 (1995)

    MathSciNet  MATH  Google Scholar 

  11. Betta M.F., Guibé O., Mercaldo A.: Neumann problems for nonlinear elliptic equations with L 1 data. J. Differ. Equ. 259, 898–924 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Blanchard D., Carbone L., Gaudiello A.: Homogenization of a monotone problem in a domain with oscillating boundary. M2AN Math. Model. Numer. Anal. 33, 1057–1070 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Blanchard D., Gaudiello A., Griso G.: Junction of a periodic family of elastic rods with a 3d plate. I. J. Math. Pures Appl. (9) 88, 1–33 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Blanchard D., Gaudiello A., Griso G.: Junction of a periodic family of elastic rods with a thin plate. II. J. Math. Pures Appl. (9) 88, 149–190 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Blanchard D., Gaudiello A., Mel’nyk T.A.: Boundary homogenization and reduction of dimension in a Kirchhoff–Love plate. SIAM J. Math. Anal. 39, 1764–1787 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Blanchard, D., Gaudiello, A., Mossino, J.: Highly oscillating boundaries and reduction of dimension: the critical case. Anal. Appl. (Singap.) 5, 137–163, 2007

  17. Blanchard D., Griso G.: Microscopic effects in the homogenization of the junction of rods and a thin plate. Asymptot. Anal. 56, 1–36 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Blanke B., Delecluse P.: Variability of the tropical atlantic ocean simulated by a general circulation model with two different mixed-layer physics. J. Phys. Oceanogr. 23, 1363–1388 (1993)

    Article  ADS  Google Scholar 

  19. Boccardo L., Gallouët T.: Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87, 149–169 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Braides A., Fonseca I., Francfort G.: 3D–2D Asymptotic analysis for inhomogeneous thin films. Indiana Univ. Math. J., 49, 1367–1404 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Brizzi, R., Chalot, J.-P.: Homogénéisation de frontières. Ph.D. thesis, Université de Nice, 1978

  22. Brizzi R., Chalot J.-P.: Boundary homogenization and Neumann boundary value problem. Ric. Mat. 46, 341–387 (1997)

    MathSciNet  MATH  Google Scholar 

  23. Bulícek M., Lewandowski R., Málek J.: On evolutionary Navier–Stokes–Fourier type system in three spatial dimensions. Comment. Math. Univ. Carol. 52, 89–114 (2001)

    MathSciNet  MATH  Google Scholar 

  24. Buttazzo G., Kohn R.V.: Reinforcement by a thin layer with oscillating thickness. Appl. Math. Optim. 16, 247–261 (1987)

    Article  MathSciNet  Google Scholar 

  25. Casado-Díaz J., Fernández-Cara E., Simon J.: Why viscous fluids adhere to rugose walls: a mathematical explanation. J. Differ. Equ. 189, 526–537 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Casado-Díaz J., Luna-Laynez M., Suárez-Grau F.J.: Asymptotic behavior of the Navier–Stokes system in a thin domain with Navier condition on a slightly rough boundary. SIAM J. Math. Anal. 45, 1641–1674 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chechkin G.A., Friedman A., Piatnitski A.L.: The boundary-value problem in domains with very rapidly oscillating boundary. J. Math. Anal. Appl. 231, 213–234 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Corbo Esposito A., Donato P., Gaudiello A., Picard C.: Homogenization of the p-Laplacian in a domain with oscillating boundary. Commun. Appl. Nonlinear Anal. 4, 1–23 (1997)

    MathSciNet  MATH  Google Scholar 

  29. Crew, H.: General Physics: An Elementary Text-Book for Colleges, 2nd edn. The Macmillan Company, The University of Michigan, 1910

  30. Dal Maso G., Murat F., Orsina L., Prignet A.: Renormalized solutions of elliptic equations with general measure data. Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 28, 741–808 (1999)

    MathSciNet  MATH  Google Scholar 

  31. Dall’Aglio A.: Approximated solutions of equations with L 1 data. Application to the H-convergence of quasi-linear parabolic equations. Ann. Mat. Pura Appl. (4) 170, 207–240 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Damlamian A., Pettersson K.: Homogenization of oscillating boundaries. Discrete Contin. Dyn. Syst. 23, 197–219 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. D’Angelo C., Panasenko G., Quarteroni A.: Asymptotic-numerical derivation of the Robin type coupling conditions for the macroscopic pressure at a reservoir-capillaries interface. Appl. Anal. 92, 158–171 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. De Maio U., Durante T., Mel’nyk T.A.: Asymptotic approximation for the solution to the Robin problem in a thick multi-level junction. Math. Models Methods Appl. Sci. 15, 1897–1921 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. De Maio U., Gaudiello A., Lefter C.: Optimal control for a parabolic problem in a domain with highly oscillating boundary. Appl. Anal. 83, 1245–1264 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. De Maio U., Nandakumaran A.K.: Exact internal controllability for a hyperbolic problem in a domain with highly oscillating boundary. Asymptot. Anal. 83, 189–206 (2013)

    MathSciNet  MATH  Google Scholar 

  37. Decarreau A., Liang J., Rakotoson J.-M.: Trace imbeddings for T-sets and application to Neumann–Dirichlet problems with measures included in the boundary data. Ann. Fac. Sci. Toulouse Math. (6) 5, 443–470 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. DiPerna R.J., Lions P.-L.: On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math. 130, 321–366 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  39. Donato P., Piatnitski A.: On the effective interfacial resistance through rough surfaces. Commun. Pure Appl. Anal. 9, 1295–1310 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Droniou J.: Solving convection–diffusion equations with mixed, Neumann and Fourier boundary conditions and measures as data, by a duality method. Adv. Differ. Equ. 5, 1341–1396 (2000)

    MathSciNet  MATH  Google Scholar 

  41. DroniouJ. Vázquez J.L.: Noncoercive convection–diffusion elliptic problems with Neumann boundary conditions. Calc. Var. Partial Differ. Equ. 34, 413–434 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Durante T., Faella L., Perugia C.: Homogenization and behaviour of optimal controls for the wave equation in domains with oscillating boundary. NoDEA Nonlinear Differ. Equ. Appl. 14, 455–489 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Egorova, I.E., Khruslov, E.Y.: Asymptotic behavior of solutions of the second boundary value problem in domains with random thin cracks. Teor. Funktsiĭ Funktsional. Anal. i Prilozhen 52, 91–103, 1989 (Russian). English translation: J. Sov. Math. 52, 3412–3421, 1990

  44. Gallouët T., Herbin R.: Existence of a solution to a coupled elliptic system. Appl. Math. Lett. 7, 49–55 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  45. Gaudiello, A., Guibé, O.: Homogenization of an elliptic second-order problem with L log L data in a domain with oscillating boundary. Commun. Contemp. Math. 15, 1–13, 2013

  46. Gaudiello A., Sili A.: Homogenization of highly oscillating boundaries with strongly contrasting diffusivity. SIAM J. Math. Anal. 47, 1671–1692 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Lenczner, M.: Multiscale model for atomic force microscope array mechanical behavior. Appl. Phys. Lett. 90, 091908-1–091908-3, 2007

  48. Lewandowski, R.: Mathématique et Océanographie. Masson, Paris, 1997

  49. Lions, P.-L., Murat, F.: Solutions renormalisées d’équations elliptiques. Unpublished manuscript

  50. Mel’nyk T.A.: Homogenization of the Poisson equation in a thick periodic junction. Z. Anal. Anwend. 18, 953–975 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  51. Mel’nyk T.A.: Asymptotic approximation for the solution to a semi-linear parabolic problem in a thick junction with the branched structure. J. Math. Anal. Appl. 424, 1237–1260 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. Mel’nyk T.A., Nakvasiuk I.A.: Homogenization of a semilinear variational inequality in a thick multi-level junction. J. Inequal. Appl. 2016, 104 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  53. Mel’nyk T.A., Nazarov S.A.: Asymptotic behavior of the Neumann spectral problem solution in a domain of “tooth comb” type. J. Math. Sci. 85, 2326–2346 (1997)

    Article  Google Scholar 

  54. Murat F.: Homogenization of renormalized solutions of elliptic equations. Ann. Inst. H. Poincaré Anal. Non linéaire 8, 309–332 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Murat, F.: Soluciones renormalizadas de EDP elipticas no lineales. Lecture notes, University of Sevilla, 1993, and Publication 93023 du Laboratoire d’Analyse Numérique de l’Université Paris VI, 1993

  56. Murat, F.: Equations elliptiques non linéaires avec second membre L 1 ou mesure, Actes du 26ème Congrès national d’analyse numérique (Les Karellis, juin 1994), Université de Lyon I, A12–A24, 1994

  57. Nandakumaran A.K., Prakash R., Sardar B.C.: Periodic controls in an oscillating domain: controls via unfolding and homogenization. SIAM J. Control Optim. 53, 3245–3269 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  58. Nevard J., Keller J.B.: Homogenization of rough boundaries and interfaces. SIAM J. Appl. Math. 57, 1660–1686 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  59. Stampacchia G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15, 189–258 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  60. Tartar, L.: Problèmes d’homogénéisation dans les équations aux dérivées partielles. Cours Peccot, Collège de France, March 1977. Partially written in F. Murat, H-Convergence, Séminaire d’analyse fonctionnelle et numérique de l’Université d’Alger, 1977–1978. English translation: Murat, F., Tartar, L.: H-Convergence. Mathematical Modeling of Composite Materials. Progress in Nonlinear Differential Equations and their Applications, Vol. 31 (Eds. Cherkaev A. and Kohn R.V.). Birkhäuser, Boston, 21–44, 1997

  61. Tartar, L.: The General Theory of Homogenization: A Personalized Introduction. Lecture Notes of the Unione Matematica Italiana, Vol. 7. Springer, Berlin, 2009

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Gaudiello.

Additional information

Communicated by D. Kinderlehrer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaudiello, A., Guibé, O. & Murat, F. Homogenization of the Brush Problem with a Source Term in L 1 . Arch Rational Mech Anal 225, 1–64 (2017). https://doi.org/10.1007/s00205-017-1079-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1079-2

Navigation