Skip to main content
Log in

Spectrum Analysis of Some Kinetic Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We analyze the spectrum structure of some kinetic equations qualitatively by using semigroup theory and linear operator perturbation theory. The models include the classical Boltzmann equation for hard potentials with or without angular cutoff and the Landau equation with \({\gamma\geqq-2}\). As an application, we show that the solutions to these two fundamental equations are asymptotically equivalent (mod time decay rate \({t^{-5/4}}\)) as \({t\to\infty}\) to that of the compressible Navier–Stokes equations for initial data around an equilibrium state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandre R., Morimoto Y., Ukai S., Xu C.-J., Yang T.: The Boltzmann equation without angular cutoff in the whole space: qualitative properties of solutions. Arch. Ration. Mech. Anal. 202, 599–661 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alexandre R., Morimoto Y., Ukai S., Xu C.-J., Yang T.: Boltzmann equation without angular cutoff in the whole space: I, global existence for soft potential. J. Funct. Anal. 262, 915–1010 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arsen’ev A.: The Cauchy problem for the linearized Boltzmann equation. USSR Comput. Math. Math. Phys. 5(5), 110–136 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bouchut F.: Hypoelliptic regularity in kinetic equations. J. Math. Pure. Appl. 81, 1135–1159 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caflisch R.: The Boltzmann equation with soft potentials. Comm. Math. Phys. 74, 97–109 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Cercignani C., Illner R., Pulvirenti M.: The Mathematical Theory of Dilute Gases. Springer, New York (1994)

    Book  MATH  Google Scholar 

  7. Degond P., Lemou M.: Dispersion relations for the linearized Fokker–Planck equation. Arch. Ration. Mech. Anal. 138(2), 137–167 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dudyński M., Ekiel-Jezewska M.: On the linearized relativistic Boltzmann equation. Comm. Math. Phys. 115, 607–629 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Ellis R., Pinsky M.: The first and second fluid approximation to the linearized Boltzmann equation. J. Math. Pure. Appl. 54, 125–156 (1975)

    MathSciNet  MATH  Google Scholar 

  10. Glassey R.T., Strauss W.A.: Asymptotic stability of the relativistic Maxwellian. Publ. Res. Inst. Math. Sci. 29, 301–347 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gressman, T., Strain R.: Global classical solutions of the Boltzmann equation without angular cut-off. J. Am. Math. Soc. 24(3), 771–847 (2011)

  12. Guo Y.: The Landau equation in a periodic box. Comm. Math. Phys. 231, 391–434 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Guo Y.: Boltzmann diffusive limit beyond the Navier–Stokes approximation. Comm. Pure Appl. Math. 59(5), 626–687 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kato T.: Perturbation Theory for Linear Operators. Springer, New York (1966)

    Book  MATH  Google Scholar 

  15. Kawashima S., Matsumura A., Nishida T.: On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier–Stokes equation. Comm. Math. Phys. 70, 97–124 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Lee M.-Y., Liu T.-P., Yu S.-H.: Large-time behavior of solutions for the Boltzmann equation with hard potentials. Comm. Math. Phys. 269, 17–37 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Lemou M.: Linearized quantum and relativistic Fokker–Planck–Landau equations. Math. Methods Appl. Sci. 23(12), 1093–1119 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Liu T.-P., Yu S.-H.: The Green’s function and large-time behavior of solutions for one dimensional Boltzmann equation. Comm. Pure Appl. Math. 57, 1543–1608 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu T.-P., Yu S.-H.: Solving Boltzmann equation I, Green function. Bull. Inst. Math. Acad. Sin. (N.S.) 6(2), 115–234 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Mouhot C.: Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials. Comm. Math. Phys. 261(3), 629–672 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Mouhot C.: Explicit coercivity estimates for the linearized Boltzmann and Landau operators. Comm. P.D.E. 31(7–9), 1321–1348 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mouhot C., Strain R.: Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff. J. Math. Pures Appl. 87(5), 515–553 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nicolaenko, B.: Dispersion laws for plane wave propagation. The Boltzmann Equation, (Eds. Grunbaum F.) Courant Institute of Mathematical Sciences, New York, 1971

  24. Pao, Y.-P.: Boltzmann collision operator with inverse power intermolecular potential, I, II. Commun. Pure Appl. Math. 27, 407–428 (1974), 559–581 (1974)

  25. Reed M., Simon B.: Methods of Modern Mathematical Physics. Academic Press, New York (1978)

    MATH  Google Scholar 

  26. Shizuta Y.: On the classical solutions of the Boltzmann equation. Comm. Pure Appl. Math. 36, 705–754 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Strain R.: Optimal time decay of the non cut-off Boltzmann equation in the whole space. Kinet. Relat. Models 5(3), 583–613 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ukai, S.: On the existence of global solutions of mixed problem for nonlinear Boltzmann equation. Proc. Jpn. Acad. 50, 179–184. (1974)

  29. Ukai S.: Les solutions globales de l’equation de Boltzmann dans l’espace tout entier et dans le demi-espace. C. R. Acad. Sci. Paris Ser. A-B. 282, 317–320 (1976)

    MathSciNet  MATH  Google Scholar 

  30. Ukai S., Asano K.: On the Cauchy problem of the Boltzmann equation with a soft potential. Publ. Res. Inst. Math. Sci. 18, 57–99 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ukai, S., Yang, T.: Mathematical theory of Boltzmann equation, Lecture Notes Series-No, Vol. 8, Liu Bie Ju Center of Mathematical Sciences, City University of Hongkong, Hongkong, 2006

  32. Villani, C.: A review of mathematical topics in collisional kinetic theory. Handbook of Mathematical Fluid Dynamics, Vol. I. North-Holland, Amsterdam, 71–305, 2002,

  33. Yang T., Yu H.-J.: Optimal convergence rates of the Landau Equation with external force in the whole space. Acta Math. Sci. 29B((4), 1035–1562 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Yang T., Yu H.-J.: Hypocoercivity of the relativistic Boltzmann and Landau equations in the whole space. J. Differ. Equ. 248(3), 1518–1560 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Yu.

Additional information

Communicated by T.-P. Liu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Yu, H. Spectrum Analysis of Some Kinetic Equations. Arch Rational Mech Anal 222, 731–768 (2016). https://doi.org/10.1007/s00205-016-1010-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-1010-2

Navigation